
AIDA194 194 ARTIJFICIAL INTELLIGENCE SOFTWdARE ACGUISITION PROGRM 1
VOLUNE 1(U) SANDERS ASSOCIATES INC NASHUA MH

CBARDARdIL ET AL. DEC 87 RADC-TR-97-249-YOL-1
UNCLFI SSIFIED F3MS-85-C-S25 F/0123 L

2N

3 6

L.0

11111L2 1111. .

MICROCOPY RESOLUTION TEST CHART
JRF tb TANnARD;~ I~~

ER.,o;; ..r.p-

a r

[* .,c.-. -j.V- . -- --r-

RADC-TR-7-2a. Vol I (of ftwo)
IV" Tesbas nowe
Desembr Ila

0)

ARTIFICIAL INTELLIGENCE SOFTWARE
ACQUISITION PROGRAM DTIC

EELECT
APR2 719

Cm wudi, Lan I", y wv m. umaf a OWNl

ROME AIR DEVELOPMENT CENTER
Air Force Systems Comen

Grifflm Air Force Buse, NY 13441-6700

~8 42n 148
... - ,,, ~~-% %-% - ,-.,,% , ,. .- ,.: ,,-.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it ill be releasable to the general public, including foreign nations.

RADC-TR-87-249, Vol I (of two) has been reviewed and is approved
for publication.

APPROVED:

RICHARD H. EVANS
Project Engineer

APPROVED: 0

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMADER:(~~

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

% % %
%, % %* %,. ~ % % %%

NON %' %, %ns.*~* % %~ %

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

IForm ApprovedREPORT DOCUMENTATION PAGE 0MB No 0704-0188 J
Ia. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
UNCLASSIFIED N/ Aj

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION i AVAILABILITY OF REPORT1
NIA Approved for public release;

2b DECLASSIFiCATIONI/DOWNGRADING SCHEDULE distribution unlimited.
N/A _____________________

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER S)

N/A RADC-TR-87-249, Vol I (of two)

6aNM FPERFORMING ORGANIZATION 6b OFFICE SYMBOL 5a. NAME OF MONITORING ORGANIZATION
Sanders Associates, Inc. I (if applicable) Rome Air Development Center (COEE)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
95 Canal Street, CS 2004 Griffiss AFB NY 13441-5700
Nashua NH 03061-2004

Ba. AMEOF UN~NG/PONSR.-G 8 OFICESYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION N(;MPEP
ORGANIZATION (ifl applicable) F30602-8 5- C-02 54
RoeAir Development Center COEE

Sc ADDRESS (Ci;y, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS 9
Griffiss AFB NY 13441-5700 PIROGRAM 'PROJECT TASK IWORK UNIT

ELEMENT NO NO NO ACCESSION N'O

=328 2532 01 16
11 TITLE (include Security Classification)
ARTIFICIAL INTELLIGENCE SOFTWARE ACQ*UISITION PROGRAM4

72 PERSONAL AUTHOR(S)
Carol Bardawil, Larry Fry, Sandy King, Linda Leszcynski, Graham O'Neil

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year Month, Day) 15 PAGE COUNT

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Artificial Intelligence, Software development process,

documentation standards.
19. ABSTRACT (Continue on reverse if necessary arid identify by block number)
'The goal of this research was to evaluate the software development process for artificial %
intelligence.(Al)fsystems and postulate a software acquisition model. To acconplish this
research, the major elements performed were a literature search, a case study analysis of
26 knowledge based system (KBS) development efforts, and consultation with experienced Al
system developers. The results of this study are presented in a two volume report.
Volume I presents observations made during the analysis of KBS software developments and
provides summaries of the case study data. A comparison of the KBS development process to.,%
DOD-STD-2167 Is also documented. Volume II discusses a KBS process model and customer! P. J\.
developer interface model. A comparison of the postulated model with DOD-STD -2167 and
DOD-STD-2167A (draft) is made in terms of activities, products, reviews and baselines.

I % F.
20 DISTRIBUTION/,AVAILABILIPVY OF ABSTRACT 1 ABSTRACT SECURITY CLASSIFICATION .

IKIUNCLASSIFIED'UNLiMviTED 0 SAME AS RPT D OTIC USERS UNCLASSIFIED ".0
22a NAME OF RESPONSIBL E NOIVi~tIAL 22h TELEPHONE (Include Area Coue) 22 CE T S(t P

RICHARD M. EVANS 1(315) 330-356 RADC (COEE)0
DIDForm 1473, JUN 86 Prewous edittons are obsolete SE(LiRITY CLASSIFJCAT j _ _ 0, .

LNCLASSIFIED

% k.~~~~~~. "k I , . .
0 . . e P I 0,e eI? e . .- r . ..7 .

%% %'t

%, .. . *~* .. A_

WVWWVWrWWP-- WW7WVWUW W-WWVV~lrlRV J WWVWWWWL TwvwvrI7bPVV).-WrWR-V--%F7 N i.

UNCLASSIFIED

UNCLASSIFIE

V % %V %

W . .J. . . I

% % % %
% % %% % %% %

w ~'Nos

'A ZAs !-

Contents
Volunie I

I Introduction .

1.1 Problem Definition

1.2 Solution Strategy
2 Data Gathering Approach 2-1 J

22Case Studies 2
2.2.1 Questionnaire. 2 2
2.2.2 Selection Criteria for Cases Studied 2
2.2.3 List of Participants. N

23Other Methods 2 3
2.3.1 EIA Workshop. 2 3
2.3.2 Expert System Conference. 2 5t
2.3.3 TI Satellite Symposiums.................. -25
2.3.4 Expert System Technology Transfer Seminar. 0 2
2.3.5 Consultation. 2 6
2.3.6 Research at SDI Library. 2 6
2.3.7 Coupling with DOD-STD)-2167 2 6

3Observations 3.-1

3.1 Conventional Software Approach 3 1
3.1.1 Standard Waterfall Approach to Conventional SW Developrnent .3 1
3.1.2 Reported Problems in Conventional Software Development 3-2

3.2 Al Software Approach. 3 6 f
3.3 Generic Description of the Al Development Process. 3- 7

3.3.1 The Expert System Model 3 7%

3.3.2 The DEC Model. 3 8
3.3.3 The Dipmeter Advisor. 3 9
3.3.4 Other Generic Models 3 10
3.3.5 Generic Definition of KBS Developments 3-10

3.4 Description of KBS Development Characteristics 3 -11

3.4.1 Knowledge Acquisition. 3-11.
3.4.2 Knowledge Representation 3 12
3.4.3 Reasoning Methods 3 15
3.4.1 Reduindancy Exploitation. 3 17
3.4.5 lDevelopment Environment 3 17 ___

3.4.6 Exploratory Programming Style 3 18
3.4.7 Rapid Prototyping. 3-19
3.4.8 Small Development Teans 3-21 des
3.4.9 User Involvement 3 22 or

V ,r V %
%- Avt %

i .. %. %I

3.4.10 Documentation Produced. 3-23
3.4.11 Testing. 3-25
3.4.12 Management Control Mechanirss. 3-27

3.5 Difficulties in Developing Al Systems 3-28
3.5.1 Al Software Development Problems Cited in the Literature 3-28
3.5.2 Al Software Problems Observed from the Case Studies 3-29
3.5.3 A Comparison of Al and Conventional Software Development Problems 3-31

4 Came Study Results 4-I
4.1 Case Study Data.................. I-
4.2 Evaluation of the Case Study Data. 4-29

4.2.1 Common Aspects. 4-29

4.2.2 Relational Trends. 4-30
4.2.3 Distinguishing Features. 4-31

4.3 SDI Related Issues/Implications 4-32

5 Synopsis 5-1
5.1 Comparison of KBS Development Process to DOD-2 167. 5-i p

5.2 Interface of Conventional and KBS Software 5-2
5.2.1 Management Perspectives 5-2 N

5.2.2 Implementation Perspectives- 3
5.2.3 Testing and QA Perspectives. 5-4
5.2.4 Comparison of Development Techniques. 5-4
5.2.5 Integration with Data Bases 5-5
5.2.6 Management Implications 5-5

5.3 Application of Al to SDI Issues. 5-5

Bibliography BIB-I

Glossary GLO-I

Acronyms ACR-I

A Software Development Problems A-I
A.I1 Life Cycle A-3

A.1. 1 Requirements A-3
A. 1.2 Management. A-3
A. 1.3 Acquisition A-3
A.l1.4 Product Assurance....................................A-4
A.l1.5 Transition... A-4
A. 1.6 Life Cycle Problem Tables.............................. A-4

* A.2 Environment..A-16
A.2.1 Disciplined Methods...................................A- 16
A.2.2 Labor Intensive..................................... A-16

% %

% %
It %*. %. %... v * ' ~ . - ? *~..-~*

V. %

A.2.3 Tools.. A 16
A.2.4 Reinvention A 16
A.2.5 Capital Investment Al?1
A.2.6 Environment Problem Tables A 17

A.3 Software Product A-28
A.3.1 Doesn't Meet the Need. A 28
A.3.2 Software Metrics A 28
A.3.3 Design Attributes. A 28
A.3.4 Documentation. A 28
A.3.5 Immutable Software. A 28
A.3.6 Software Product Problem 'Tables A 29

A.4 People.......................... AA I
A.4.1 Skills. A 41
A.4.2 Availability A -41
A.4.3 Incentive A .11
AA..4 People Problem Tables. A 41I

B Questionnaire B3I

C Case Summnaries c
0.1 ARINO Summary....... (
C.2 Boeing Computer Services Summary C 2
C.3 Boeing Military Airplane Company Summary.... 3
C.4 Brattle Research Corporation Summary........ 5
0.5 Carnegie Group Inc. Summary. 6
C.6 Digital Equipment Corporation Summary c 7
0.7 Expert Technologies, Inc. Summary. 8
0.8 Frey Associates, Inc. Summary C 10
0.9 GTE Data Services Summary. C I I
0.10 IBM Federal Systems Group Summary. C -13
0.11 Inference Corporation Summary (Authorizer's Assistant). C 15
0. 12 Inference Corporation Summary (Medical Charge Evaluation Control) (1C 17
0. 13 Lockheed Aircraft Service Company Summary (Expert Software P~ricer) . (1-19
0. 14 Lockheed Aircraft Service Company Summary (Frequency Hopper Signal Wdetill

0.5fier) C 2
C15Lock heed-Georgia Company Summary C 22

C-16 MITRE/Bedford Summary c 23
C. 17 MITRE/McLean Summary C 24
C-18 North rop/ Aircraft Division Summary . . .C 25

C. 10 PAIll Government System~s Corporation Summary . . . '

(C.20 Sanders Associates, Inc Sumnmary.C 2 9
C.21 SA&E Sumnmary (Deccision Support System)(
C.22 SA& E Summiary (Sensitive Financial Analysis System) C31
C.23 Texas instruments Inc. Summary....................................(. 32

N, -Piii
% % % % %

5~~~~.~ %S** %*~*

% '.. "

List of Tables
Volmne I

2.2.3-1 List of Questionnaire Respondents 2 .1

3.3.5-1 Generic Model Phases 3 10
3.5.1-2 Artificial Intelligence Software Problems 3 28

4.1-1 ARINC Research Corporation - System Testability and Mainteniance

Program (STAMP) : 3
4.1-2 Boeing Computer Services - Strategic Force Management Decisioli Aid

4-4

4.1-3 Boeing Military Airplane Company - Automatic Target Recognition
(ATR) Program1 5

4.1-4 Brattle Research Corporation - Text Interpretation System . . . 4 6

4.1-5 Carnegie Group, Inc. - DISPATCHER Project 4 - 7
4.1- 6 Digital Equipment Corporation - XSEL/XCON System 8
4.1-7 Expert Technologies Inc. - PEGASYS1 9

4.1-8 Frey Associates, Inc. - 'FHEMIS Management Information Svst,i I 10 % ..

4.1-9 GTE Data Services - Central Office Maintenance Printout Analysis and
Suggest System (COMPASS)

4.1-10 IBM Federal Systems Group - Fault Diagnosis and Resolution Sy.Zte,"i
(FDRS). 12

4.1-11 Inference Corp. - Authorizer's Assistant ! 13

4.1-12 Inference Corp. - Medical Charge Evaluation Control (Medchec) *1 14 t -

4.1-13 Lockheed Aircraft Service Company - Expert Software Pricer (LS'.)
4--15 _

4.1-14 Lockheed Aircraft Service Company - Frequency Hopper Signal idciti-
fier 1 16

4.1-15 Lockheed-Georgia Company - Pilot's Associate 17
4.1-16 MITRE Inc. (Bedford) - Liquid Oxygen Expert System 1 %8

4.1-17 MITRE Inc. (McLean) - ANALYST t 19
4.1-18 Northrop/Aircraft Division- Expert System for Target Attack Seqi.ertc-

ing (ESTAS) 20
4.1-19 PAR Government Systems Corporation - Cost Benefit of 'l'actica, Air

Operations (CBTA).) I

4.1--20 PAR Government Systvims Corporation -)uplex ArNiiyh i ,,, ad,tr
Targetiig l)ecision Aid (I)ART) 22

4.1 21 PAR Government Systems Corporation - See aid Proje(t. I';rwi .\- -
tivity (SPEA)2:.

4.1-22 Sanders Associates - 'rest Assistant (TESS) .1 21
4.1-23 Schlumberger, Inc. - l)ipmeter Advisor System .%. 2,

4.1-24 Software Architecture and Engineering, Inc. -)ecision Support S.,-
tem 4 '26

",

'Ir 61k 6N7 Wicr "N

4.1-25 Software Architecture and Engineering, Inc. -Sensitive Financial Anal-A
ysis System 4-27

4.1-26 Texas Instruments Inc. - Production Scheduler Project ... 4 28

A. 1.6-I1 Conventional Software Requirements A-5
A-1.6- 2 Artificial Intelligence Requirements. A-6
A.1.6-3 Conventional Software Management A-7
A.1.6-4 Conventional Software Management (Cont.). A-8
A. 1.6-5 Artificial Intelligence Management A-9
A. 1.6-6 Conventional Software Acquisition. A-10
A. 1.6-7 Artificial Intelligence Acquisition A-li
A. 1.6-8 Conventional Software Product Assurance. A- 12
A. 1.6-9 Artificial Intelligence Product Assurance A-13
A.1.6-10 Conventional Software Transition A- 14
A-1.6-11 Artificial Intelligence Transition A-I5
A.2.6-12 Conventional Software Disciplined Methods A-18
A.2.6-13 Artificial Intelligence Disciplined Methods. A-19
A. 2.6- 14 Conventional Software Labor Intensive A-20S
A.2.6 15 Artificial Intelligence Labor Intensive. A-21
A. 2.6 16 Conventional Software Tools. A-22
A. 2.6 17 Artificial Intelligence Tools A-23
A.2.6-18 Conventional Software Reinvention A-24
A.2.6- 19 Artificial Intelligence Reinvention. A-25__
A. 2.6- 20 Conventional Software Capital Investment. A-26
A.2.6-21 Artificial Intelligence Capital Investment A-27 ,-

A.3.6-22 Conventional Software Doesn't Meet the Need A-30
A.3.6-23 Artificial Intelligence Doesn't Meet the Need. A-31%
A.3.6-24 Conventional Software Metrics. A-32 -

A.3.6-25 Artificial Intelligence Metrics. A-33
A.3.6- 26 Conventional Software Design Attributes A-34
A.3.6-27 Conventional Software Design Attributes (Cont.) A-35
A.3.6-28 Artificial Intelligence Design Attributes. A-36
A. 3.6- 29 Conventional Software Documentation A-37
A.3.6-30 Artificial Intelligence Documentation. A-38
A. 3.6 31 Conventional Software Immitable Software A-39
A.3.6- 32 Artificial Intelligence IMmultable Software. A-40
AA.4 3 3 Conventional Software Skills. A-42
AAA. -34 Artificial Intelligence Skills A-43
A.4.4-35 Conventional Software Availability. A-44
A.4.4-36 Artificial Intelligence Availability A-45 V
A.4.4-37 Conventional Software Incentive A-46
AAA. 38 Artificial Intelligence Incentive A-47 , 0

vi IJ0

:5~~- 'J '-d.,.d P e' .P "., ".1

-% -- . V- V WV7 - - -1.

Contents

Volume HI

1 Conventional Software Development Methodology 1
1. 1 Description of DOD-STD-2167
1.1.1 Disciplined Software Development..................................1-2
1.1.2 Activities, Products..1 -3
1.1.3 Reviews, Baselines..1-5
1.1.4 Quality Evaluation...1 I to
1.1.5 Reserves 1 12 ..

1.2 Shortcomings of DOD-STD 2167 1-12
1.2.1 Software Problems Unaddressed by 2167 1 12
1.2.2 Open Issues and Revision A 1 13
1.2.3 Sequential Nature of 2167 1 -14
1.3 Evolution in the Conventional Software Development Process. 1-15
1.3.1 Recognition of Prototyping. 15
1.3.2 Use of Off-the-Shelf Software. 16

1.3.3 Compatibility with Al Software Development 16 :

2 Properties of a KBS Development Model 2 1
2.1 Provisions. 2 1
2.1.1 Visibility 2 1
2.1.2 Control. 2-3
2.1.3 Flexibility. 2 4
2.1.4 Compatibility 2 4
2.2 Composition. 2-5
2. 2.1 Activities Identification 25

2.2.2 Documentation Needs 2- 9
2.2.3 Configuration Management 2-12
2.2.4 Testing Approaches. 2-13 .A

2.2.5 Quality Evaluation. 2-16
2.2.6 Contractual Mechanisms. 2 18
2.2.7 Interface to Conventional Software. 2- 19
2.2.8 Interface to Systems Engineering 2 20).

3 Derived KBS Models 3 1
3.1 Initial Model Based on KBS D~evelopmnent Characteristics 3 1
3.1.1 System Definition...... 3 :11
3.1.2 System Implementation...... :
3.1.3 System Operation 3 .5
3.2 Postulated Model Encompassing DOD Needs 3 6
3.2.1 System Definition. 3 f;0
3.2.2 System Implementation.......................... : 3I'l

vil

% % %
-. ~~ % p *P

3.2.3 System Operation. 3-20
3.3 Advantages of the Postulated Model(s). 3-20
3.3.1 Resolution of Common Software Problems. 3-20
3.3.2 Meets DOD Management Needs. 3-20
3.4 Comparison of KBS and 2167 Interface Models 3-21
3.4.1 Overview 3-21
3.4.2 Products 3-21ZI
3.4.3 Reviews. 3-24
3.4.4 Baselines 3-27

4 Recommended Studies/ Activities 4-1i
4.1 Model Application Case Studies. 4-1
4.2 Technology Studies. 4-1
4.2.1 Critical System Functions. 4-1
4.2.2 Risk Reduction Efforts 4-2
4.3 Engineering Discipline 4-2

Bibliography BIB-i _

Acronyms ACR-i

%:

Vill*

-. r~~~~r A. r-V V%
Z~

%. % %

jw ap pS

- ..

List of Figures

Volume II N
1-1 Software Development Cycle (per DOD-STD-2167).. 17
1-2 Software Development Cycle (Cont.) (per DOD-STD-2 167) ..- ,. 1 8
1-3 Waterfall Software Development Model....... 11
1-4 The Prototype Life Cycle Model 1 I17

2-1 Top Level View of KBS Software Development 2 7
2-2 KBS Formal Test Approach 2 15 *

3-1 Top Level KBS Process Model. 3-1
3-2 Detailed KBS Process Model 3 2Ai
3-3 Sample Hybrid System Organization 3-3
3-4 KBS Developer/Customrer Interface Model. 3-7
3-5 Interface Requirements Specification Outline. 3 -8
3-6 KBS Segment Specification Outline 3 t0
3-7 Software Development Plan A Outline 3 11
3-8 Functional Design Document Outline. 1 1I
3-9 Software Test Description/ Procedures Outline. 3 17
3-10 Functional Product Specification Outline. 3 18
3-11 Software Trest Report Outline 3 18

% % %

41 J.

NOWV

List of Tables 4'

Volume II
1.1.4-1 DOD-STD-2167 Soft .,are Quality Evaluation Activities 1-11

3.4.1-1 Mapping of Phases to Processes 3-22
3.4.2-2 M apping of Products 3-23
3.4.3-3 Mapping of Reviews and Audits 3-25
3.4.4-4 Mapping of Baselines/Configuration 3-27

ii

0

xia

List of Contributers

The following people have contributed to the Artificial Intelligence Software Acquisition Program
(AISAP) study and final report.

Case Study Participants

Marilyn Aglubat Northrop Avionics Division
Sam Ashby Boeing Military Airplane Company %'

Virginia Barker Digital Equipment Corporation

Carlos Bhola Expert Technologies, Inc.
Dr. R. P. Bonasso The MITRE Corporation (McLean, VA)
Rodney M. Bond ARINC Research Corporation

Douglas Clafin Lockheed Aircraft Service Company
Stan Coffman Lockheed-Georgia Company
P. R. Deweese Lockheed-Georgia Company
Linda Dudding Lockheed Aircraft Service Company
Vicki Florian Software Architecture and Engineering, Inc.

Kimberly Freitas Inference Corporation
Kermit Gates PAR Government Systems Corporation
Terry Ginn Sanders Associates, Inc.
Gary G. Greenfield Frey Associates, Inc.
Carl Gunther Inference Corporation
William B. Harrelson Brattle Research Corporation
David Harris Sanders Associates, Inc.

SDr. D. F. Hubbard Carnegie Group, Inc.

Ted Jardine Boeing Computer Services
Elizabeth Kooker IBM Federal Systems Group
Robert Lough Northrop Avionics Division
Jim Montague Texas Instruments, Inc.
Edward Orciuch Digital Equipment Corporation
Laurent Piketty Inference Corporation

M. J. Prelle The MITRE Corporation (Bedford, NiA)
Jack Rahaim Digital Equipment Corporation
Ethan Scarl The MITRE Corporation (Bedford, MA)

Anthony D. Vanker (TE Data Services

Reviewers/ Consultants

Dick Cloutier Sanders Associates, Inc.

Terry Ginn Sanders Associates, Inc.

David Harris Sanders Associates, Inc.

Dr. Charles Rich Massachusetts Institute of Technology
Tom Royer Sanders Associates, Inc.

xiii

L , # e..- , , . . # . . .? . w-

% % 4.. ,

%I al

Preface
In August 1985, the Rome Air Development Center selected Sanders Associates, Ic. to eIvahte

the software development process for Artificial Intelligence (Al) systems and postulate a software
acquisition model. To accomplish these objectives, Sanders devised a strategy consisting of the
following major elements: U-

* Literature review;

* Case study analysis; and "" "

* Consultaiion with experienced Al system developers.

The case study analyses represent historical data on 26 knowledge base system (KIIS) developmet
efforts. Because the case data focuses on KBS software, the acquisition model developed pertains
to KBS efforts.

The results of this study are presented in a two volume report. Volume I presents observationis
made during the analysis of KBS software developments as well as summaries of the case study
data. A comparison of the KBS development process to DOD-STD-2167 is also made.

Ii.y

Volume II presents a KBS process model as well as a postulated customer/developer interface I
model. A comparison of the postulated model with DOD-STD-2167 and l)OD-STi)-2167A (draft)
is made in terms of activities, products, reviews and baselines.

4:

S%,

U
UV

I

% % % % % % % %.

%~~~' 5%% %%

%A

- S 6 -- 6 - 7. - gV. M...Z - Z k a =. Z

SECTION I
," ~~Introduction"i ,:',

V

1.1 Problem Definition

To date, many Artificial Intelligence (AI) systems have been developed in university and other.
research environments with relatively few oriented towards Department of Defense(DOl)) applica- -__
tions. The scale and complexity of these existing systems is substantially less than that anticipated il
for the Strategic Defense Initiative (SDI) Battle Management/ Comm and Control and Continuica-
tions (BMIC) Technology Program. In addition, the manner in which these A! systems have been
developed is largely foreign to the DOD software acquisition process (e.g. DOD-STD-2167) . For
instance, conventional software issues such as design reviews, programming languages, documnenta-
tion, quality assurance procedures, testing and other methods commonly used in military system n

acquisition are nonexistent, inappropriate or radically different in the Al software developmenlt
process. Because DOD envisions a need for A] system technology to address many components of ,
the SDI, a clearer understanding of these differences is required. Namely, new policies, procedu~res, "
standards and contracting mechanisms must be in place to ensure a high success rate it] acquiiring ,
A[systems in general. Consequently, specific stated areas of interest to DOD are:

•Analysis of the Al software development process to determine unique characteristics and needs; %.

•Development of a model(s) for Al software acquisition that satisfies both military n|eeds and
unique Al requirements. The model should at least address the following areas:-.,

- documentation standards; !

- review procedures;
--rigorous testing methods; and ''

-contract mechanisms. :"'

•Analysis and specification for interfacing/integrating A] and conventional software lanigiages
and processes. V%_€

Th oeArDevelopment Center (RADC), Air Force Systems Command, at Griffiss Air Force ,.

,, =

Base, N. Y., was tasked by DOD to respond to SDI needs concerning technology crit 1al to /0 V 'C"-",
Hlaving solicited public response in the form of proposals, RADC selected Sanders Associates, hic.,
to perform and report on a specific study consistent with DOD interests as stated above. 0

1.2 Solution Strategy,.,"

PP

J.

% -

kx -N, . %' gTo date," many Artificial Intelligence (Al) systems" have. been developed . -' -:: "in univers -; ,'.4:,;,.:-'.; .y and-;.oth'er

J.

1.2 Solution Strategy $

consisted of collecting case study data for AI systems which had either completed development or

were well underway towards completing a prototype. During the Phase I data collection activity,

it was learned that case study data was only readily available for Knowledge Based Systems (KBS)

and not generally available for other At application areas (e.g. signal processing, natural language

processing, etc.). Because of this, the scope of the study concentrated on KBS. Phase 11 focused Pf

on the development of a KBS software acquisition model. Issues germane to KBS and conventional
software interfaces/integration are considered to be a part of both phases.

In Phase I, the analysis effort included an extensive literature search/review, detailed case study
evaluations and an assessment of DOD-STD-2167. The basis of the adopted strategy was:

* Extract from the published literature as much information as possible concerning KIS software
development techniques and characteristics;

" Design a comprehensive questionnaire to extract data from experienced KBS software builders
on specific systems;

Consult in-house expert system builders to enhance the understanding of the material re-
v iewed;

" Study DOD-STD-2167 methodology for use as the basis for defining deviations appropriate
for KBS software development.

This approach enabled the study team to meet the requirements of Phase I. Specifically, KBS

software development characteristics were defined and deviations from the conventional software
development process were identified.

The Phase I approach also resulted in the collection of data pertinent to the Phase II effort. Namely,
case study analyses, particularly in the area of expert systems, led to the identification of KBS areas
critical to the SDI effort. Case study participants also provided substantial information concerning
"lessons learned" which proved to be invaluable in Lernis of defining a standard approach that
avoids the pitfalls already experienced by others.

Specific goals for Phase II, the final phase of the software project, were to define a model that
specified acquisition and development approaches for Knowledge Based System applications. The

models developed define the activities, products, reviews and baselines for the development of KBS

software. They also identify management needs for visibility and control over developing products S
as well as the required delivery of quality products within cost and schedule.

Additional activities designed to satisfy the goals of Phase II included a strong coupling with the
DOD-STD-2167 Revision A activities, gaining insight into software quality metrics research and

development and continued data collection as new data sources were defined. The coupling with
the 2167 Revision A activities was necessary to produce a model which is compatable with and
interfaces to the world of conventional software development.".-

The reslts of the Phase II modeling effort are documented in Volume If of this final report. The.
reiim;dI r of 1hi" 6%is reportr is ottlined as follows: % "

o Section 2 contains a discussion of the methods used to gather all available data concerning
the KBS software development process. ,

1-2

p..e.
p~~~ %%~'~. %% - ~ ~ .. . ~

% %* p \
% %% % NX. .$~~...s~ .

'k; W - -%- -

1.2 Solution Strategy

* Observations made through analysis of the data obtained aic presented in Section 3. 'Tllese

observations pertain to both the conventional and KBS software approaches, including the

difficulties inherent to both methods.

* A detailed evaluation of the case study data obtained is contained in Section I. CoIiiitioii

aspects and important features are highlighted.

" Section 5 presents a synopsis of KBS development methods versus)(O))-STD-2167, convell-

tional and KBS software interface issues as well as the application of KBS to SDI requirenents .

* A list of references, bibliography, glossary, and a list of acronyms follow Section 5.
k%

Lastly, the report includes several appenidices:

- Appendix A details problems cited in the development of KBS and conventional software,

- Appendix B presents the case study questionnaire; and

- Appendix C presents summaries of the case study responses.

.. ,

0

'a'

-

1-3

SECTION 2

Data Gathering Approach

2.1 Literature Search

The data gathering effort began with a comprehensive literature search extending to boith oun-line-
and hardcopy sources of information. The computerized DIALOG SystemT' was used to access the
following databases:

" INSPEC (Information Services in Physics, Elect rotech Iiolog y, Computers and~ (oit rol)

" ABlIviform (American Business Information)

" The Computer Database

" NTIS (National Technical Information Service)

The DROLS (Defense R1)T & E On-Line System) search service was also used to acr'ss Ithe l)''lF
(D~efeunse Technical Information Center) database.

K ey words pert inen t to the study were used to iden ti fy art ic les from th e v ar Iou Is d at ahae fo r f Irt IIe r

inspection. Numerous articles covering a variety of relevant topics such as9 art ificial initelligence.
expert systems, natural language processing and battle management were ordered as a rfesidt (if the
on-line search activity.

-01 .

In addition to computerized search techniques, many hardcopy sources of information Wert, revIewe-Id %.

SF1011 Its textbooks, conference proce~edinigs and journals A ciijh' iititi ouof all resorros I2sF(

Iitn l I ire I uar n Iti o th Is docuirieit Iis presented Iit te Ist I (f lHeferetces at (,1i v he II'II(liio.r, t 1 i.

Tlhe Ii t.rati ire se-archI wwq ani ongoinrg proces~s si nce Its Incir(10iou N an w1 % paort niuar rcfc(- rc os

lisited at the hack (if an article or textbook uinder revie%% were often ordered Tlhis rippjle Flcl Fr

eniabrledl the 9tudy teani Io obtain and review an exhaustive set (if resources co)rrcspoorilhn I(theit

subject study.,

The other mred ium that was used for obtaining referenices anid iiiforniat ion aboij)UIN Ilt'o pine! it *n

issues was the AH PA'IISENETYI groups for Al inchiding both the imodleratedl awlid onolerat ed

uiF'wsgroups. Numierous articles, technical reports and confercrn o proceedings Av(rv ordurcd iind

reviewed it result of references fromn the network discus-sions.

I ALI,()(InV'rrir tin Serviceoi. Inrc., a wh''ity o'wred sFibsideiar .,f Inckhro' (rp. 1 i ijp

21, S'

Il

r %.r %

-P%%

2.2 Case Studies

2.2 Case Studies

2.2.1 Questionnaire '. .a

A comprehensive questionnaire was designed and used as the basis for conducting the AI/KBS
system case studies. The questionnaire, contained in Appendix B, is divided into four parts:

1. Introduction

2. Background

3. Development Cycle, and

4. Miscellaneous.

The Introduction put the questionnaire in perspective by discussing the concept of a software de-
velopment model. The Background section solicited general information about the subject system,
such as purpose, the number of experienced engineers assigned to the project and the extent of t
success attributable to the system. The Development Cycle section contained the most questions,%
and was subdivided into the following categories:

* General Procedures

* Requirements Definition/Analysis

* System Construction

* System Evaluation/Validation, and

* Field Support.

The overall purpose of the Development Cycle section was to obtain detailed technical and man- e
agerial information concerning the scope, development and acceptance of the system.

Lastly, the section titled Miscellaneous was used to capture data on lessons learned as well as allow
the respondent to include pertinent information that had not already been requested.

Most of the responses received were in written form. In a few cases, oral responses were obtained
using an interview or discussion forum with the respondent. In these cases, a written annotation r
of the discussion was generated and sent to the respondent to verify the accuracy of the reported %
information. S

2.2.2 Selection Criteria for Cases Studied

Once the questionnaire was finalized, the primary goal was to obtain as many responses as possible.
Maximizing the number of samples available for analysis enabled conclusions to be drawn which
more closely reflected the general AI/KBS community. Distribution of the questionnaire was also

2-2

.--. ~vl.

2.2.3 List of Participants

made to a wide variety of companies. In this wa ,data was captured pertaiining to dillcit
application areas and procedural methods for developing Ai/KBS software.

The case selection process began by identifying two in-house K1BS efforts. From that pti,it, the ;r
literature search and review uncovered many companies and universities that are active iII K13S .%
software development. Because most of the university efforts are experimental ill nat ure and without
strict schedules for completing defined milestones, the tendency was to concentrate on the industrial
sector. Companies that claimed to have built successful AI systems were of the most interest

In addition to the literature search, data was obtained on-line from the Commerce Business l)aily
(CBD) files concerning Al awards since September 1982. Based on the descriptions of thi projects
awarded, candidates whose work seemed most pertinent to the subject study were seleced. In,
addition, discussions were held with cognizant government agencies to ensure appropriateness of
effort and verify claims in the literature.

As mentioned in the following section, attendance at various workshops/ seminars resulted in an. r

contacts who were interested in responding to our questionnaire. Lastly, some of the contacts made
resulted in references to other sources active in the KBS arena.

2.2.3 List of Participants

Based on the selection process, over 50 companies/agencies were contacted Initial uortacts were

generally made by telephone to introduce the study and determine whether or not the sourre %
was interested in participating. In the majority of cases, the response to participate was psitivce
Although more than 40 questionnaires were sent out to interested parties, many respondents were
prohibited from participating on the basis of proprietary information. Con.equently, 26 completed ter
questionnaire responses were received. The list of respondents is shown i Table 2.2-3 I along A%
with the name of the system to which the response applies. Case analyses are presented ii Section

4 and summaries corresponding to the questionnaire responses for each participant are shown In
Appendix C.

2.3 Other Methods '

In addition to the literature search and case studies, project members attended several Al semiinars
to obtain information concerning the subject study. Individuals experienced in Al software devel-
opment were consulted as needed to enhance the team's understanding of the discipline LastIly,
to gather data pertinent to the ongoing SDI architecture studies, a trip was made t, the S)1 Li-
brary in Falls Church, Virginia. These information gathering methods are described further in the -" "-
succeeding paragraphs. .

2.3.1 EIA Workshop

During the week of 16 through 20 September 1985, a team representative was present at aiu Lie(-

tronic Industries Association (EIA) workshop entitled "Technology for the 199C's.' This tealm
'.. ,

2-3

%
.. .%.- Z";. ."-"."-": " , .. >.' ,-."/ .,:' ,''''' ""';,.. ,.. .-, ', ,".:..",' 2 ,'. .;,... < .,. e . ,

N

2.3.1 EIA Workshop

Table 2.2.3-1: List of Questionnaire Respondents

NAME SYSTEM APPLICATION

ARINC STAMP Equipment testability shell

BOEING Strategic Force Management Replanning decision aid
Decision Aid

BOEING ATR Automatic Target. Recognition

BRATTLE RESEARCH Unnamed Text interpretation

CARNEGIE GROUP DISPATCHER Factory monitor/control

DEC a XCON Computer system configuration

ETI PEGASYS Automatic pagination

FREY ASSOCIATES THEMIS Natural language processor

GTE DATA SERVICES COMPASS Fault diagnosis %
IBM FSG FDRS Fault diagnosis %

INFERENCE Authorizer's Assistant Charge authorizations %

INFERENCE Medchec Fraud detection

LAS ESP Software costing

LAS Frequency Hopper Signal Identifier Signal identification I.•

LGC Pilot's Associate Combat avionics assistant

MITRE (BEDFORD) Liquid Oxygen Expert System Fault diagnosis/detection

MITRE (McLEAN) ANALYST Tactical planning system

NORTHROP ESTAS Avionics decision aid

PGSC CBTAO Tactical cost decision aid
PGSC DART Target decision aid

PGSC SPEA Battle situation projections

SANDERS TESS Test equipment assistant ;

SCIIIUMBERGER Dipmeter Advisor System Interpretation of logs

SAE DSDS Decision support tool

SAkE SFAS Financial analysis system
TI PRODUCTION SCHEDULER Manufacturing production scheduler

DE(is a registered trademark of the Digital Equipment Corporation

2-4

S%
% %S% "*" " " %" % * % "w

%
"% % " " " "

%
% ". -% " *".""" "% % % %

-°
% "" "" ' % ="

%

0
2.3.2 Exj~ei-t Syst*iii (5-,ifreie.0

4) and par-

representative attended a tutorial on DOD Standard 2167 (hiereafter referenced its 216~7 an0%r

ticipated in a panel forum on A I (LIid its Impact (l urro t Ell'.no 1I1tnt 1-111 Plu0 I'it e . li it

particular, the panel concentrated on the Al software development process and 2167. Mani ' featUres

of the Al development process were idIentified, most of which are neither addressed nor colipat lle

with the most recent version of 2167. Specific areas of concern are discussed in F) I of this report

In addition to the information obtained at tit, workshop, attendance was valuable because it led

to several contacts who responded to the case study questionnair-.

2.3.2 Expert Systemr Confereuce

In October 1985, a team member attended a two day &i'p rt Systf in-o (nfe re flee sponsored by lie

Data Processing Management Association (IPMA). Trhere were nineteen speakers, thlree of whom

were military personnel involved in Al applications work. Althiotgh the majority of the speakers

were fromt the indulstrial sector, several were actually working on Al svstenis for the unihit arN

Pertinent topics covered included:

" managing the development of large expert systems;

" software engineering methods for expert system development;

"knowledge acquisition techniques;

" developing expert systems in Ada-'. and

" a variety of expert system applications and ptutential uses. .~

The conference proved to be valuable]i terms of obtaining information germane to the Subject

study and identifying potential respondents to our case study questioninaire

2.3.3 TI Satellite Symposiums

Tearn members attended three Artificial Intelligence Satellite Sympositumts sp uisereel Icy Tlexsa

Instruments, Inc. (TI). The dates and titles atre as follows.

~~0 *~ Noveumbe'r 1:1, 1 98S 1% iieoie(dqe - Illsed Mi.qse.9 .1 ~II Yhe I r .1 ppleb 41 f 1, r

* .1 it ie 2 5, 1986 Itio tvlcdpIq - [lot~ q tf Sys (tIs: 4 St c1,- By- -. t (it 1, 1(1 1, t tI rql(."'Ia -cf f

* April 8, 1987 A41 AlI Preedictivity Hthin~dveub/c .A'-
6. 1

E'ach sympi~osmimc feactured renowned speakers in tlie Al field For e''arople. D r. L ii ~ard 1 ucil eiciin

(Staniford Uiiiiversitv) particip~ated in all three' sesstoieq

Earh of these symposiums lifichidedl descripftions; of several vxpert s stt 'ie In root ine usf . ;id il\x ..

qilestiot) and answer sessions. Resource materials Avcre also) prov idel inchidiiig it gos-sar o--f luris

and an extensiv e bi bliog raphy

Ad;% isa l iiesii't tr.dicniik -f thce U.S. 1 -,vlciiie (At: I-int I't. gici~ eu 4 i I

2 5%

S-°.. - ~ ~ . ~ ~ = = " ,...,.,., - ! t

2.3.4 Expert Systen Technology Transfer Seminar

2.3.4 Expert System Technology Tr ansfer Seminar

Fron %lav 12-14, 1986, a team member attended ain expert system setniinilr spotsMOred by)igital

Equipment Corporation (I)EC). Practical strategies for managing expert system developinent were

covered from three perspectives: strategic/business, technical and hlman res tmirce/rga~izatu)iial..

The faculty included DEC personnel currently involved li expert systeti developiient projects.

One of the more valuable facets of the seminar was a video taped case study, extending over the ,
three day period. After each of the nine tapes were played, the attendees separated into groups to

analyze salient issues and recommend a course of action...

The materials from the seminar include the Guide t,, Expert Systeris z ahnicqlicnt manual which

presents in detail DEC's ten step management procedure.

2.3.5 Consultation

Three individuals have been used as consulting resources since the inception of the project: Dr.

(harles Rich of MIT, Mr. J.T. Ginn and Mr. David larris, both of Sanders Associates.

)r. lich, an Al research scientist at MIT, has provided guidance concerning our solution strategies

andl reviewed selected materials generated by the project team. l)r. IRicli is active in the field,

having pblished numerous articles, given many Al related lectures and having received several V.

grants from the National Science Foundation (NSF) and the Defense Advanced Research Projects

Agency (DARPA).

Mr. (.inn and Mr. Harris, both active in the development of Al software at Sanders Associates, O

have provided continuous support in suggesting case study contacts, answering questions concerning

the A I development process, reviewing all project documentation and making recommendations as
appropriate.

2.3.6 Research at SDI Library

Two team members visited the SDI library in February 1986 to review SDI architecture study data

aq well as other materials pertinent to the study. Although architecture study information was
unavailable, several articles pertaining to the study in general were identified and ordered.

0

2.3.7 (Coupling with DOD-STD-2167

On two different occasions, team members met with 1,he Joint Logistics Commanders (JLC) agen-

ties concerning the Logicon, Inc. Revision A activities on 2167. The intent of this coupling was to

i r(vidie input to Revision A concerning Al system developments and their applicability to the stan-

dard. Since (he Revision A draft publication was com)leted prior to the K [IS modeling activity, any e

infihielce on Ihe proposed changes to 2167 was minimal. It is expected, however, that the planned

rhease of 4 ev isiui 1 will be a muore appropriate time ro closely couple KIBS system acquisition with

Ihe heveh ,u)'ent ,hod'l of 216i7 and to identify misnatches requiring resolution. Because of the •

natutre of KIS versus conventional software developrment and a foreseen requirement to integrate

2-6

V% .I.. V %0

- a - .- - a S .¢

0

2.3.7 (:P ,iliig with DO)-STD-2167 .-""e

both into the same sy stein (e.g., knowledge-Vised signal prmuc'sl • i v) I is ii iport tn i I hal ti t n ii, ,%

dialogue be maintained betweeii MI1S miodeli,'g acLivities and htangc, ti lO h ntl ;tl . (

development models defined in 2167.

,.'- .,

del

P V

%%

a. S

%-' -. %

A:-...

p..'.. --

. J . U . .) .,,1 i . . c .w _y , j / , . , ,,v$..i. w ., ..J . ..Y 2, g a .- k, r, , i - ' . . . P J _ . " 7 K h, -. .: . - . - , - . -

% "i in. a

SECTION 3
-6

Observations

-'S- %%

3.1 Conventional Software Approach

3.1.1 Standard Waterfall Approach to Conventional SW Developixieit

Large scale DOI) computerized system developments, which began in earnest ii th(, 1960's, tok lo
various approaches to the development of software. Although there were no forially defined models
for software development within DOD, there evolved an accepted approach that became the pat-
tern for software developments acquired under contract to the DOD. This approach doculeted
by 6, Boehm], 142, Metzger], and others was characterized as the waterfall model for software
development. Although the terminology and the break points between phases varied, Lhe inodels
essentially included the phases of:

% '

* requirements definition;

* design,

" coding and debug;

* integration and testing; and

" operations and maintenance. %

r
The Military Services, in the mid and late 1970's, began to recognize the(waterfall iiodel a i jI)'wj
representation of a sound management approach and took actions to eniibody this iodel wit ,it I I
various policies and standards being developed at that point in time. For example, both Air r,

Regulation (AFR) 800-14, written in 1975, and MIL-STD-1679(Navy), writ (,n in 197S iin hld, d
some level of representation of the waterfall model. The 1679 standard went even, fort h, r anl ..

inciuded the ergineerrig di.ciplines that were an outgrowth of the strictred elngilncerg rev, 1t0ion "

The' co)miCelts of tp-d)wn design and strirctireid prograiuniing were included as re(l iiinc its for .,,.

.4Of ware leinig develolw, for the Navy.

Policies and procedires were developed to ad(ress the miallagetllrland cligilignecrilig pr,,blers

kriwri to ,,Ii.t driring Ih i mid-7T's. As the applical io , of cotmput lters il Ii , I)'l) . ,(,\p ' \ tmd .t.

prlemhns with softlware continued to occur and the search to find \ was to imiipto the ft,ft\ar, .

developtient process was anr ongoing oie. ,.%..

The inext step within)O1) in the policy and software devvlIlhitliel tad;tiar(iretla li h abotlit ,

as a resilt, of a workshop sponsored by tihe Joint Logistics (.imni irrerrders ('lltllr lies,,iurct.,

Marnagemruent. Grouip. The workshop, held in March 1979, put forth ihe reco imnrenlilttirii) tlat the _

3 1

% % % % % %

%, . ", .,"%;":"- ," . ,," .'',-""""" ,'". . ". ."",,.- ,. ," . .""". "-% 9"% -, ,, . ","-. . "% . ,. ,5-",.:,- :--. ", - . --..-. "_. ,

3.1.2 Reported Problems In Conventional Software Development i

Services should and could pursue the development of software under a single policy and standard

and that efficiencies could be achieved with a common approach within the)O1) comiiiunity.

As a result of the workshop, a working group was formed to develop a joint Service policy and

standard for the development of software. The model chosen was a slight modification to previously

mentioned waterfall models and was highlighted by its concentration on activities, products, reviews

and baselines associated with the software development process. Both the policy and the standard,

now known as DOD-STD-2167 and dated 5 June 1985, were developed it an effort to improve

the DOD software development process with an eye towards eliminating the types of prollems

identified below. In addition to the standard, a %et of data item descriptiots (I)ll)s) and changes

to Military Standards 483, 1521, and 490 were developed. This standards package relrsents tlie

)O) approach to software development for the 1980's.

3.1.2 Reported Problems in Conventional Software Development

In preparation for the KBS modeling effort, it was necessary to review past problems in conven-

tional software development so that past mistakes would not be repeated. Numerous studies had

been conducted and significant effort expended to define and categorize these problems. With the

knowledge of past development problems in hand, the modeling effort could be conducted in such a %

manner that the resulting KBS development model orientation would not repeat the past problems
of the conventional software development world.
Many problems associated with conventional software surfaced during the development of DOD

Defense Systems and can be categorized best under the following headings:

* Software Life Cycle;

* 5ftware Environment;
e

" Software Product; and
.%

" Software People.

The following sections examine the major problems in each of the stipulated categories. The

problem categorization identified is based on a report issued by the DOD Joint Services Task

Force, Re port of the DOD Task Force on Softlware Problenis. Appendix A presents a list of specific
conventional and Al software development probiems. [17, Druffel"

.e 3.1.2.1 Software Life Cycle . -

Software Life Cycle refers to the development of conventional software from requirements defi-
nition and analysis to system maintenance and quality assurance. Software problems have been

experienced in the following areas:

* hieqi irenents;

e Managemment;

3-2

40 **Ze 1

4*'. 40-e y.0 J, % % iv *p*<

3.1.2 Reported Probleme iM Conventionial Software Developiient r%.

*Acquisition; '

*Product Assurance; and

o ransition.

Requirements is the process that involves the analysis and definition of a system. lIn conventional
software, some of the major difficulties with requirements surface from incomplete or inaccurate
requirements documents and/or poor communication between users and engineers. Ii general,
each of the stipulated problems can result in increased costs arid unacceptable schedule delays. A
system's success is particularly affected when Lire requiremrenits are based l)rinirarily oil available
time and money.

Difficulties with management of conventional software development occur because of a variety of

obstacles that relate to:

*insufficient budget allocation;

*unskilled management;

*lack of metrics, models and tools; -

* undefined software acquisition methods; and

" determining how to develop software versus hardware.

The ripple effect of unskilled management is reflected throughout all phlases of dhe softwitre life(,
cycle. For example, proper design depends highly on complete requirements whichi ill turn rely %~V
heavily on good management communication. Another obstacle to good inraiagemili resilts frouYir
budget estimates based on vague requirements or budgets determined fromr inarctrate muodls and~

nietrics designed to determine software costs. Finally, without Lte iiecessary ' mtodels. irrelri-cs anid
tools, management does not have the appropriate tools to adhere to software developmrernt standards
requiring status reporting.

Acquisition of software and tools is not fully defined for conventional soft ware dev elopnreint because ~'
government software acquisition has historically been based onl Ltre purchase of asso~ciatedl bardwarc
In the area of tools application, configurations of software are often riot properk managed even
throngh (.w tools exiMto 4 do so). Tools are often developed in-houtse aind ii t inide .nvai Iabh t o (t hers

for their its(,.

Testing is not provided at each life cycle phrase because of finsuffljeit, ftinditig arnd sclredinrg

Ill fact, iincertaintres arise in determnini ng Lte amount anrd kind1(of t estinrg suit able to0 eachI life -.

cycle phase. Testing problems occur mrost frequently where requiremnrts are vague, Inromuplete or

difficult to measure.

The transition of software, whether from exploratory researchi to engitreering developmoent, or froll .J

development to maintenance, introduces numnerous problems that adversely affect (-otivent rnal

software. Two transition examples from which problems sur faced are: (tle jut rodnicn (ini of trcro-e

pr(c'ssors aird firmware into software developmernt and the distribirti'on of narg('nienlt (' nt rol ~*
(a1 lived for ita idard or policy has ariseni'; and the transit ion of s(ft war(' fr oinr research an(a

developmie. to operatiotial systeinrs (Jow Shrourld it. be acconipiished ')

-N;

3.1.2 Reported Problems In Conventional Software Dvelopntient

3.1.2.2 Environment

The Environment category deals with the tools and methodologies used in the develcpment and

support of computer software. Problems exist in the following areas:

" Disciplined Methods; "P

" Labor-intensive activities;

1,00ls;
:

* Reinvention and,-I.

* Capital Investment.

Conventional software needs to improve the use of engineering disciplines. A set of activities are
required to develop and support software throughout the entire life cycle in order to create high
quality softw;ire. Large development efforts are performed by many grou!,. either colocated or

independently located. This demands disciplined contro! mechanisms if software development is to
be properly managed.

As a labor-intensive technology, conventional software needs to concentrate on automating the
manual process in order to improve the efficiency of people. For example, the manual process of
reporting documents, status, etc. could be automated to allow professionals to concentrate on more
difficult and important tasks.

The lack of standardized tools has resulted in problems with acquisition and software development.
A large number of tools tend to be inaccessible, difficult to use or inefficient. Software tool acqui-

sition could become more definable and therefore more achievable with a standard set of tools that
provide consistent computer support, particularly for software development. For example, high b7
order languages should strive for machine independence that would improve transportability.

Softwait, reusability is considered by many to be a powerful means of reducing software reinvention.
llowevur, attempts to reuse software inappropriate to the given application may actually hinder

the devlopmnent process and degrade the resultant product.

Capital investment is needed to improve the support environments and reduce problems such as

reinvent Ion or the lack of adequate methodologies and tools. There are three main problems asso- .-.. -

clated with the lack of capital for conventional software expenditures. First, software is developed
on out-,f-date hardware not designed to support the software effort. Second, schedule slips due to

the lack of adequate tools introduce higher overall costs. Third, not enough capital is invested in .

* IR & I) projects.

3.1.2.3 Software Product

The So41 wir, I 'rlI i 'ategory is delined aq the operational comptiter software and materials .
, necessary it) provide life cycle support. These include requirement and design specifications, source
code, test, data, systeon generation data, unique support. tools, etc. Problems have been experienced
in the following areas: "ON

3-4 1

3.1.2 Reported Probleins in Convenitionial Soft ware Developiiieut

" Doesn't Meet the Need;

" Software Metrics;

" Design Attributes;

" Documentation; and

* Immutable Software.

'Doesn't meet the need' refers to the users dissatisfaction with the systemn. An inferior prodiict c-an
easily be developed as a result of unclear, vague or incorrect requiremnirts. System performance. is
highly dependent on the type and quality of testing. In both situations, users end up with a 9tem *
which simply does not work to perform the mission.

'a Software metrics provide essential analytic models and empirical data on software to help In I le
selection of software engineering techniques for estimating development resources amid to evaluating
future costs. However, few effective models were found in use to validate conventional life cycli ,'

costs and productivity during the development and support phase. Few goodI analytic mmodlels and *
methods are available to gather empirical data to estimate future costs amid system immpacts. No ''

'a method to determine how to develop firmware has been established. Lastly, managers dto not receive .'

the status reports necessary for cost and schedule analysis.

Design attributes deal with the provision of an acceptable programn solution to probllems defined m1m

the requirements specifications. Somie of the major areas where design problems have beent idcntified 4
are: not adhering to good software development techniques; inadequately designed(requliiretmnts: p

and understanding software versus hardware implications. Improperly designed softWar(11 Offenl r ,

the result of not following a defined software methodology, a lack of adherence to a tof)-owmI
hierarchical system breakdown and/or a lack of consideration to Imurnan vrngiiieering ais an imumt rfant 0.%

design issue. Another major design problem occurs when requirements are vague or incorrect and
the engineer makes the wrong assumptions to implement the requirenrt. Also, correct suIft ware
design decisions depend on a basic understanding of the hardware involved. Since(comiveimoml '

software normally cannot handle systemn modifications without added cost, expend~it tires or scli((lIlf- W
delays, ineffective system design severely hinders the system's success.

A Imajor problem affecting conventional software documnentat ion is that financial resources aflo(atedl 0
to its pirepanratiotn (to not necessarily reflect actual costs. Therefore, wheniever a schedule slips,* or

the budget is overspetnt, the documentation effort is relaxed. Consequentliy, successive soft ware%
changes are not reflected in the documentation. Another problem steinmining fromi a redut cn 1
in dlocumnentation is the deterinination of whtat, needIs to be documrented. For inst anre, syst o'n

inierfaces itist be d ocuimented andl thme documnentation of requirememnts and] desi g is imiport ant.
Also, traceability between documents is critical but generally not possible because of unavailable :
tools.

One of the problems with the development of conventional computer software i that 'I is gentrlI
tailored to the specific application or hardware environment. Consequently, softwarv packagcs zirt
ofteit systeim unique, iiot-lportable andI non-reus-alle (Immutable Soft ware) Ac qutisit iOn ageie WeS

3re thmen forced to repeatedly pay for software which could have been availahic elsewhere.1%'

3 5%

% % % %0
% 4r . %% LPJ

Q*W -P %" %aa' a a ' % %*,~~~~~~~

"

d Ap

? P..J

ON

3.2 AI Software Approach

3.1.2.4 People

Qualified software personnel for managerial and technical positions are required to avoid project

problems. People problems exist in the following subcategories:

" Skills;

" Availability; and
.J4

" Incentive.

T'The rapid spread of digital technology has resulted In a widespread shortage of siilled sysevit en-(-,,'r

gineers, software engineers and managers. Consequently, the three main problems of professional 1*
skills, professional availability and professional incentive have been identified. A highly valued and
respected managerial skill is the ability to guide software through the life cycle from requirements
to maintenance. However, the skills necessary to do this requires a broad rarge of software experi-
ence and acquired knowledge. Few educational programs exist to provide prof,!ssionals with these V..
necessary skills. Therefore, the lack of available, experienced and skilled software professionals
continues to exist. Professional incentives are needed to attract and retain cxpert software profes- •
.sionals. A lack of reward for excellence and the competitive software market in search of skilled
software professionals results in high turnover rates.

3.2 Al Software Approach

Al techniques have typically been oriented towards ill-structured problems with solutions that are
characterized as heuristic, non-algorithmic and non-deterministic. Al technology application areas
I hat reflect these characteristics include robotics, vision, natural language, automatic programming, ,-
planning and expert systems. The Al solution approach to these areas is in contrast to conventional
software methods that generally deal with well-defined algorithmic problems and deterministic
solutions.

The characteristics associated with Al applications have had a strong influence on the approaches4,,

taken to AI software development. Uncertainty of tasks, knowledge, results and functionality have
prompted Ai programs to be written to gain a better understanding of the problem domain. Because 0
of this uncertainty, rapid changes in the solution approach are expected as more is learned about the
problem domain. This has led to the development of powerful tools and integrated environments for
the development of Al software. The result is that Al development approaches are iterative in nature
and accomplished by small development teams using highly integrated development environments.

The Al technology environment that has supported the non-algorithmic, heuristic approach to 0
lproblem solving includes programminitig languages, development methodologies, and development $---%

I ,lv irnw'nl;t I 'lhcs,. ((luciilogy areas have been pritne contlributors in SIpoj)rljiIIg small develo)-
ileitii tcallS ill their qluest to handle large problem domains.

Al progrannuing languages inherently support development under uncertainty. The longest sir-
vivinig Al language is LISIP. It supports delayed committment, and language extensions as two 0
approaches to mawaging uncertainty.

....-

3 6

"4' N " j~ P P -P . '. J"
. . . . ""

%~~~ %I

3.3 (c'ueric Descrij)tioui of the Al Develqiuijeu PrvoceNS

Development methodologies are closely tied to the iterativc piroblemy suk ilig app~lroach to \1 sf-

ware. B~oth the iteration cycle and the need to delay decisiona or specificatrimis jilt Ii deon~rerf

a mature prototype is complete are incomisistirit with convent ionial ,.oft warc dt-,olimv liieltiliti-

ologies. Al software development methodologies typically b~egin In the mriddli- ()f a pr, Idinr dotwm

and spiral out to a complete, acceptable solutioii rather thant adopting a top-dmhwn liier;irchi()iI

decomposition approach typical of convent ional software methodologies,

Al software development environments reflect a conunlittment to personal comIfllnrg. Thiese en-

vironments absorb some of the tedious and routine work such as: garbage collectiion; nrieinor% J

allocation; integrated editing, debugging and inspection; and documentation. TIhe) also allow hrall
dling of knowledge based facilities. Background processes in Al development envir-onielfts pro% ide N.

tracking information about programs, display presentation of tire informnation, and provide' active ?'

agents to recognize conditions, propose action and perfori cleanup. LISP mnachlins and AlI shells

are examples of such development environments.

3.3 Generic Description of the Al Development Process

Al system development has been described as a highly iterative proct-is anid gent-rally rc-.iihlvs ,

a build a little, test a little approach with numerous feedback loops. Close exarririnat im of file Al

development process reveals a set of activities that are integral to the developnet o)f an Al I vstu. (,ill ~
These activities, which are a synopsis of the models to follow, include:

* Problemu LDeinitioll
P or

" System Design,

" Implementation and(Testing; and %

" Support.

Coupling these activities with the concept, of buildin yeu rcenet li'frII t~vr

of partial capabilities for uise early in the development process. L'xpericitce tiriigh kist iii tIcii

be fed back into the development process so updates can be inadv ti futuire 'Inireinlits I ricr t(I

deli very for field uise.

Several (if Ole bet ter dcltinirent ed nI et hodolo gies are descri beI inI lic foilh in g soii r rhs I; lesc : o,.

miethodologies recognize the Iterative, I 1W remetital approachI to Al sy stemii de~oimiiii The iicric

(lisirIlpltinis (1hilfe somiewhiat ill cefiniiit aIl)nd phadsing, hlowe~ er. thleN ;ire ;ill gencrAdIN wqip,.rtt%'t

oif the' preiouilisly ilvittified activities t hat ;ire applied Mn an incremunto ii nn , r \

3.3.1 The Expetrt Syst('ti Model

Inl F111tlftnt Erpcrt Sjstr Ins 135, I layes Roth! the air hors delinie I hec m apr ;I~ aw(kin * N ledge

acquisition for expert. systen construiction as.

*Identification; N.

:1 7

%* % %,% % %P r.'P J F PJ. e% %

-, % %a'*a*- a

%.r~~'P *e 1% t.

3.3.2 Thu' DEC' Mlodel

* (on1cept ii liitt ItV

* Iorial iat ion -- '

0 Testin, .I

Although defined in terms of knowledge acquisition, the stgsalso rei'r!set h ow an expert. systeml
is const rticted Each stage defines a set of activities related to experi. -51!'tir de'velopmet.~ AF
the author!; poiiit out, these stages are not sequential in nature but instead)vprlap each other.
Further, deVVeloprrie11t of an expert system does not constitute a singic pass t hvt'' h the stages
There is continuous feedback from each of the stages to all preceeding stagesi thus rrreseriling the
incremxental nature of the K13S knowledge acquisition pro a ss.

Further examuination of tile stages of knowledge acquisition reveals a itamon g L'tiwecn stages and
the previoiiskN defined phases of Problem D~efinition, Systemi Design, lmnjlc'n;itatioui and Testing, V
Find 'Support. Idlentification equals Problem Definition and involves definig th9z rroblem domain,
developinig informal descriptions of the problem and partition'ig It into sn'poi esCncpu

alization and] Formalization parallel the System Design phase activities of knowledge acquisition
for a selected subset of the problem domain and developing a partial specification detailing the
tools aind representations thought to be appropriate for the problem domain Implementation and
' 'etig includes the actual construction of the KBS system or its subset it. the chosen language
eiv ir in int followed bv a test of its correctitess.

The five stages are fuirther itiapped into two phases rather that, the four acl 1vities idlentified above.
The two phases are-

* Phase I - Ident ification and Conceptualization

" Phase 2 - Formalization, Implementation and Testing

The differenres in phasing do not represent a conflict but instfead offer t%%(different views.%

3.3.2 Tite DEC Modl

In IFlc A it fio'ol Int, 11vVio Fxp rw.rp~ ie: Aii Introducthor J59, Scown! the author dlefines a model
for expert sv,%t eri developmniit which essentially includes fo-ir phases. T'hese phases are: .

*Inlcrnwittlntiic o .',

3d d

%. % % I' .. I'

% (r Era .o e 4 o t' e n

A 0 J0

mi.

3.3.3 Tbe D11)1n ie Ad~visor' w~

Problem Identification includes the definition of the problem i dowia n. Fuc lid0n al and ltesi gil S pe i-

fication equates to the previously generic phase of Systew D~esigni whierein it siibset or thec knowledge -6

domain is defined and a functional specification for a homidvd p~rolttype Is de veb j ed I II add(1it iou
a design specification is developled dletailinig the tools andl reprcseital Hnis I lo ight h) het ~ r ~lll
to thle problem domain. Creation of the bounded prototype represents Imiplemienitat ion ando lest ing 1r
for the first deliverable product. Incremental Development represents all subsequent development

and testing activites associated with deliveries oIii an incremental basis InI thle evolutionary, Iterative

environment of Al system development.

The DEC model closely tracks the generic miodlel previously defined. ie (levell Ipiient N1((('CW %ew

the process as a set of sequential activities to the point of acieving a bounded p~roitotype. At tis%

point it becomes the iterative process of develop ant increment, test it and theii relIease' it to thle

field for further feedback and support. -

3.3.3 The Dipineter Advisor

The Dipmeter Advisor expert system experiences reflect, two olifferent a51)eci o (f Jpltaiig crtisider-

ations {62, Smithl . Onte reflects an oscillation that occurred (luring thek pr(Ijoct atid the (fI hr thle A%

phased approach taken to develop successive prototypes for thle liincter Advisor

The oscillation is best explained by examiniing the two phased developmelnt pro~cess t hIt (Idli rred

in respect to tool development and prototype implementation.]'te first phiase const t litel a fea-

sibility demonstration in which knowledge was collected for a constrained plroblemn and lie tools

selected appropriate to the domain. The second phase Included all i'xjiiidt iloplvinelltatlo (IiIf

the domain knowledge where the expert system development tools reililited re~iievcooistat

As development progressed, poilnts in ie were reached where thev Initially delinted t(lls (fill iitt

allow further expansion of system expertise. The developmntnl process wats lilt (.Iril pi ed at tinls po(intl

while the phase one activity was restarted to construct, a more powerful set, (If 1(115I

The Dipmneter Advisor project went through a three phase developmnut pro((, f. '

* IeJL.ihi I Periotrat ieonsrto

Evalualion

The Fea Ibility phiase inclilled t lie activit ws (of kniowkledge acqulisit ion atid I~r, (t pt, iMpleenta- .5

lion, andi as suchi reall) (-oiil(] be conceived (J !s t vo selharot pliiwis i' I lit 1'erforlltii

Ieistainph~asVe allillicd hei~ prodlic for Its allilt it1k '). ,(~ c~r .

11X;n1ne'I0 I lie viality o (f lite protot I' , as at cmitm~iercial Jptodllu 'Ii 'it \ 1'crrroniette l,"dl-

11111 1I hs cmllsitvd II f liehiealltdl of tite jpr((tot\iP AlU of tpr> Hiltl~IIt 1('111 0

;iid ~iiI~e'leilIvee(Illck lor prellarat ion of tille te(Xt prtlt t- %

9J3 9 r '%

M is .-~ -%

3.3.4 Other (h'ileric Models

3.3.4 Other G-eneric Models

There are Iiiirii)Ilier models %Olch hiave been; developed which IIIsn'v . ole S0w iof i le
pre% ioilsw ii edi models i29.22, I larruoti, Gats I These miodelIs refW I t 0,-,gwh v-;ci Is I w If
overlaplirt'r i terative litn at tire, arid an approach that relies (Iil exterisivi pr,;hn ypiig.

3.3.5 (Coneric Definition of KBS Developments 5,

Defiin jg a ri er;' description of thle K13S development process Is a task hial. ri!:i-iies the identifi-
cat ion of I It, steps or phases in the process and associating activitieF witi U' ear pbast. fi it.-rative
nature of K IS developments further complicates any visualization of t he, pro_ .sq -tnd requires that
one tinrik ahoni it a,; a repeat ing process The generic phases (-f Prohi 'm lopv i lfi(.1t on, System
lDesign, liiif lemienitatim anid Teqting, and Support, as summarize-d in T'ohk .".21 1, represent a
phased pallt ni t hat Ias- been largely substantiated by the available liferat.re -A-td oi'- that was
ulSed as a 1 rlii; point. for the rmodlelinrg effort.

TIable' 3.3.5 1: Generic Model Phases

Syte Nld~model d i1IN, r 1 n Ki~r~ng

*s.ide Mbs- vode; Niliee

7: lrolilei i Problem J Problemt
IDeti I]i I, 1 .1 Iderit ification Identification ISelection

-SYvi en ,;I gn C'ornceptualization; Functional aaid Kntrwlcdrg' Prototype
Forrialization D~esign Specificationl Acrq.;ils;: io; lDevelopment arid]

System D~esign

Imnplemniit at or;t lInplementation Botunded Prow or ~pe Delivery of
anlestri f'eqtIng Prototype arnd , Implemrent ation and (omioier System

Increment at Dermonstratiorn of and System;l
lDevelopmnrt Utility anid Evaluation '

P e r ort;;an ce

~ ipf yr IDelivery Eval Ila(1(litgrti
oif IfiliL y aiid arid Mainmteriance
P etr riiat;;;

The ;etivl e ;socu I' ed %ith ea-li phase have beern widely udociirnted l i the lii' rattire arid] ac-Z:%
(('tl li 'r~ i',I *~ ~~ii s1tifi, aii ('XI).I'rt S) Steims develojrttet w~ I ivitI, Th- 'llo ho sem gitrerli

l;'siripiti 'ii r ifl- '-l. f iit f- v tip f ir Iie(1 isrulsiis aithl data rcl resin I i'd III !iv rem; aindei r if
lie ret I, r i

% ?~ % %% %%

% ,5 % %.... .5~*~-%-'.

:f %. ".,,*,.5?~555 ~ ~ 'i J~'

rTi Cr. i r4'I V.'* -.(- . .-. 'IF. V. .7; **.W -. I.X9 LjXT V I.- VV _V M V R.~9 2.i '9.

3.4 Descriptioiu of KJJS Develojpiiiit ('haractr'ristics

3.4 Description of KBS Developrnent Chavacteristics

']here are mtany chiaracristics assoeiiteI Willh a M IS (i'vil(qIjli(ii It-iil Nh I'l 'd I i*char-

acteristics either have no) comnterpart or are exercised (Iile'renl k' iii (iijiirii Io (,I iii (ltIi igial

software development activities. Ini this subsection, (Ietai led dlescript ions are provied for Ihe fol-

lowing KBS features:

1. Knowledge acquisition;

2. Knowledge representation;

3. Reasoning methods; '

4. Redundancy exploitationl;

5. Development environment;

6. Exploratory programming style;

7. Rapid prototyping;

8. Smnall development teams;

9. User involvement;

-A

10. Documentation produlced;

11. Testing; arid

12. Management control miechanismis. a

The manner iII which the above features relate to conlvenional soft x6 are c l pii ldrris va

should be evident fromn tile discussion that follows. .11,

3.4.1 KiliowledIge Acqiisitioii

A mlajor aspect of tile de'velopmnlt of ex pert systemis residvs Ii kno iividrtic iI(-ijii 1si iim Thicu

in~volves the transfer and transformiatioui of jproblerii-sliti lg excx J(tise fronii a kfit Icfige i irce .

such ws liuiiian experts, data lbases, and literature, to a prograuii Thecre islt i h~ aci iut. " I
the algorit hiniic worlid of conivenitonal softwarv elo~ltpmlent iiiatie knOiia~dIcii is ii ia c 11(11 l'l.N<

represenited aq a separate systemi ciillpoilit ii 1fortmliatei', k riw"liilge ;ti~ qws wnlr- s Ilic Z %F

111al nhi(t I icticuk Iln ex pert. syst~eiinie (ivt'ipulielt because' of telil lic i i I. I It 'Ii it i ii g ku no\ ledilgu

for iit(turpoir;Ltlii it, a kiiAledge ba~s(.i :r resuilt systi'i iidc--liti, it iini(i - priil. d P

A no.t hetl(r prolem(i is haseil on the fact t hat onuii a li mited i i i -u 4 f .1i1 fl I t
1

' \hi i id '. '' d .

ill tile aI("1111411ioll 4i kriovk ledge from i lit, dii tiaiii eapert Ihcrelirc. ki n- I ii .i (I, eii'k
o lihe skill of Itil kiiiwlcilge i' uglincrw o m s ietuvl m I(1 0 1 i 1;~l \'

lii ,rqn~ i t to iiuilcrst ;rid aiil .41 ut iure I lit, kntowledige. Ktnin" lvdg if 11-11i)fm i i il l', 'i \ c -\ id t

3 11

.- I *-.ea-...--..-Pa.-%
- - - "11 .iv Ja . *...P0M

-a- *9. . % . %

3.4.2 Kinowh'dge Rej)rr'sentatioynpp

planned interyviews bet ween the knowledge engineer(s) and the donv.io -x perf sl .It t ia

of extracting. sumimarizing andl struictutring the knowledge

Know1Aledge acIiiSit10 be lgills with an Identification of the t'xl(ri. systemis pwi-e qia,. goals and

problemis. (.('itrally. one ktiow ledge engineecr Is assigned to researchl t~w syst i So ledge dliai

and hold iiterv jew's i, ke-% Iso. ottoe dornairi expert. ustraliv repres;ents Iit expert sy~.ilivedgl

1-lowever, dlepernding oni the scale and coriplexity of the soltt on spa'co. int' latial (oli eligilieer

or expert ma. be as~iied ',) at project. i'it(knowledge irgmc ~se'lt- 1,1 researi I ie(

domnain anid schedutle inetings with the ex pert is designed to aid it: C~v r f identi fyinrg the
system's proleinq and goals

An Inherent cliffiicu t wit h k nowledge acquisition lies [in helpintg (lhe experi to) st ructure his/'her
knowledge. to identifY arid to formalize domain concepts. [Domnain experto; c.tviiot, always logically

express the manner in which they solve problems. Therefore, a number of ;iifervioewirig techniques
are avalable to the engineer to help measure performance and lii~coer expertli-u Audi tapes of

the interviews are not uncommon. L

As key probleni-solv ing methods are identified, a mneans to pr)dtc0, ar;'l i-p lie expert's knowl-
edge generaI!.% follows. Two well-known methods are to either trans, ribe onw probleyn-solving
knowledge our o paper or to produce a prototype. The motivation behind 'oth ii re!.hods revolves

around a way to present the expert with a visual aid which allIws him ",hter to ivientally step through
the process to verify the validity of the problem-solving technique. Essentially, gathering an ex- .

pert's kiiowledge involves an incremental approach to define and redefine problemis until the domain
kniowledge comitains aii adequate anionint of information to respond appropriately to a problem. ~~

The mvain idawhich drives the knowledge acquisition process from ident ifirat ioni to conceptualiza-
tion of knowledge, revolves around the need1 to formalize the concelpts, p: obl-ins and information
flow into a iniore formal knowlodge representation which defines the data strittres, inference rules
aii(l c(mit rof st rat egies Arecognie diinm wit kcled'.. (qiis!;in rcSirl-s in idenitify'Ing
an exple'rt whose kniowledlge adequately reflects the problem do nti Apipari-ii iv, an incremental
app~roach to software acquisition, in the form of several JFotot~ pe ricases, resolves the conflict
of whether data gathered is appropriate to the systemn's needs9 The appr'oach allows the domain
ex pert an opportiin ity to watch the sy stern work which enablas hin i Icr (o _ oiniint on erroneous
systemi prolem-solv ing . fit turn, the knowledge engineer is prmv n'kd with a tool withI which to
idenitify problerits areas such as what, kind of knovvledge iN not, sufficiently defined; what kind of

logic needs to be redefiiwd; and what. new areas of knowledge should be acquired. _V

Alt horigh the availablility of tools to aid iii the knowledge acquisition process is very limited, some

tool-, do t'xist . ('Sele Section 3.A.5 for a list, arid explanation of these tools). For example, there are . %

tools thfat help conotruct, and refiner expert systems. Although Ih tol:ontaquruete

soinit ries al low, the expert to dlefine arid organize the rule buildinrg blocks. o

3.4.2 hMiovvh'dgi e lt oresvmmt ationi

hiii~~I'at'. jmiiii om arid ktiO,%1e'lgn' relisetitat ion a~re closely ititerhviied, ttorts((ltrial pro-

cvs~e To ,i~Iii il Iihi-e dc ,,rnrewi period ofa kiiowledgv based systcti, I hies t1 p are revisited

manm 11it' 1" imitl lxI. delinre aid t len refine thle knowledge base. In (designin rg a knowledge based
Syst en, it is mit arn eas'N task to letcrrnirie how the knowledge can best. be represented to guiide r.1P

3 12<

% -

%0*IV% % 1 Z * ... P, -* .1 ."~ .

3.4.2 Kiiowvledge Ieln-eseziatioii

the system's problem solving behavior. Nonetheless, in order to extruct knowledge from ant expert,
it may be helpful to understand apriori how the knowledge wvill be represcltted. Ilowe'.er, wil h-
out already having the knowledge, it's not even clear what has to be represent ci (n(ttiei 1.%
in typical systemis, a rehlII vely Sitiall hut central fract 901 of the doio1;1111 expetis 1, %uiiIctl

the knowledge engineer intetacting wi~th the expert over a short period of tnine (1.c. onte to t%%(%
months). During this period, the knold% engineer has a chance to evaluate the kniowledge, %

observing patterns and levels of abstractiotts before implementation decisions are inade.Oa

How knowledge is structured in a program is highly (leperidelit. on the concepitnal framnework A
whether or not knowledge is centered around objects or p~rocesses; or thought, of symbolically. .!

Since a well-defined knowledge representation methodology can simnplify' complex problems. uinder-

standing knowledge in order to choose from a large variety of available techniutes biecomes vital.
The following subsections examine four commonly referenced technitiqutes to represenit knowledge-
semantic networks, frame-based, rule-based and logic programmni ng miethods.

3.4.2.1 Semantic Net

Semantic net, a knowledge representation method based on a network st ructuitre, cons;ist s of po its S
called nodes that are connected by li nks referred to as arcs. The li nks defi ne the relationship1 bn'et
the different nodes. Each node in the semantic net, generally represents physical or conceptunat

concepts, events or objects. A variety of choices exist for the definition of arcs, depenuitng ont ~e
the knowledge represented. Some of the more familiar arcs used to represent the(tuierarchical %;
relationship between nodes are ms-a and has-part. Natural languages tend to use arcs suich as a, ' ((.i
nbjert and recipient. As a simple example fromn the statements: 'hiunan is a inamuumoal' andI ii;uii i, ;I

human', one can infer that man is a kind of nianal if the semantic net represenfts I he kin'.' ledge .

as a hierarchical breakdown where mnan is a subset of humian and~ himutan is a suhe~ct oif mtaimmtut

Some common mnechanismrs or features of semantic nets are inheritance anit eitions. it writ tut

the ability ef one node to adopt properties front uiodes at a higher level oni a hiror Ii, A\ pi)pert
inheritance, which can be implied fronit an is-a relationiship, ineans thaut Ifisi amces (f ai cltts calt
have all characteristics of classes to which they belong. Thus, mnait I an it lst ani(c of hitotan antd
inherits properties of human which is a kind of mammal. Naturally, redund;Ltt tmforinationt aild
therefore wasted storage is avoided. Demons are another asp~ect of semant tiets 'The ialmi fon(ts

or demons Is to provide a resource of Information w hich carn be lised as val ue, w litte' cr Ile, ied ,r

sp~er I hal Iv requested of the database.

3.4.2.2 fr-aines

F~rantes are another itethotd of rep~resentt ing knowledge (facts and retlatitonshitps) Si m i tr 1 sc iltait te

tiets, framne-based knowledge represent;Lt jois make utse of a ntt ork of totes(onottltet hi' rctatiotis1

Intto ahierarchy l'rauines differ froin seimanic nets tit that ntodes aLre (deited h)\ gruitps of att dhics

(also referred to as slots), itI turn. cacti slot mIna) contain att ribte atics defautlt \ alto's, j, ilt rs

to oilier fraims, sets of rules, priiceitrat at iachmnatt (Ilhat e\ctittu '.'ltctte%(r al tihltl '.til ts are

refe'ruiueed), etc. lasically, top-level niotes IIt the' hiraritt ri'prasctttt geiati 't pt- t1int Ic'.'. r

iioles refer in specific just anice'sof coitrehts atndI tervfoirei'tilterit proiritw tt ltttrt' ' J

313

%**

..

-16 - - -

3.4.2 Kujowlvedge Rellresezita rioi

TUhe proced iir al attac hi nen allows for i~wk' comipleiintarY wNi% s I-1 i ai m k.1 tq , tlt

ceduiral or declarat'v rreentltlonis. Declarative reprewn~tali lul arvc Lx;';i(:t 1, sku la' are or

sinmplk an assertion about a fact. In contrast, procedural r-opresti.Laitwi- tre in,,re 1 lhc ii t Li

define because facts are spe iied by how they are used.

The power of framjes conSis;ts in anl ability to efficiently cormine ijeciarat v t wti 1 .riciiliiral rep-

resentations. B~ecauise iif their modularity, declarative repr (senltat tons iir(tiwui easily Inairittairied

and adaptable to independent and changing facts. Procedu'ral attachmet are tit irP efficient, hill

more dlifficuilt toi maintain

3.4.2.3 Rules .:

Ruiles are another form of k nowledge representation, basd (jI oaV rcon dzt -,' I'll FA . ' state-
nents. flasically, when the facts stipuilated In the IF part of the I ule irv trle '!!,- TI' N acrtiou part,

of the rule is e'xecuited . Wh len tis happens, the rule iN cionstdere-d fl,'(d rir (rt 4,' Results may

he rnaiiifest ed [it an instruct ion for the system to add a new Iivpoftl'em, to C)! b dat?,abase, programi
control, or peripheral dev ice control.

Tlhe pairing of the 11" portions oif rules to facts result in in ic r-f- rho;1 %~i~e Viecatso

how the systemn uses, rules to reach its conclujsions.

There :ire basically two inirec n chantsmns (ways in which rules can he s,-t upl in a rule-based
systeni) forward chaining and backward chaining. Forward chaining refers to tle gathering of%

pteces% of itiformation iii ani attemipt to build forw#ard to an endl goal. B~ackward cliaining begins0
with a goal arid works biackward to seek a chain of prernuiss! that aco ount'i for all the(facts at hand.%

Rules, as a knowledge representation schemte, provide a riatural environmert, for depicting processes
driveni by rapidly changing, complex environments. Ruile; riot only provide pV(lfcaln i how a 4d

*Program should react in relation to changing daawithout icessal-ily knowving the flow of ontrol,
but cali ls e1,(asily explain what a programn did or how a concluston was reached.

3.4.2.4 Logic Priograiiiiiiing

Logic, .)i rt It 13 pcf 'k io)% ledge ro present ation, encomnpasses a variety of logical inotationis and is0
Vised (a) I lie moiia of prioof i i mat hemat ical logic. TIwo commtton notations, are propositional logicL

amnd predicate calc-iil is.

Proposili orial 1I gic de(als with statements that are either t(rue or false. Each statement can) be
* linked ioget her iw, a conniective such as and, or,)lot, inipiucs and (qivah(oftt which result inl a

Ciiripoind uiI iatemlnenl Ruiles exist to propogate the truthful ness of compounrds Oither rules suipport

inferent ing

% lred 1,;uit e ;ilcultis Is iutoislicri'l ;uit extension to propousitionial logic. Kleniieitary units are referred
'i to ;I- t)IiJ('(I: arid si at erretts albout. objects are considered predicates. Tlhierefire, the stalerincrutJ'

* is soti(triice,Tloni) is a t vopa e tredicate with two object. Briic(anid loum. 'ie(predicate c-an
he evali iat ci ;vz a t r tue or fi se assert Ion that Toum is or 13 riot the sont of lBrucp . Predicates can lie
inked into larger ex\pre-;onmi ltv nwii is of the same conniec tives used in propositional logic".

.3 14

.. I" o. 0" IF9--

3.4.3 Roasoing Methods

PRO ZLO)(, which1 staiiiis for llR~gra I I I InI)g IiI liitag' ftcr L0(;1, -'1 I Last e<;iipb I (II I f ;I Ii; IIIPIagi

which incorIporates solile of the prini'iples of prcolcal,- logic I'(P10)1, ()f ;lot ti slii Iu litre Is

logical inference. Basically, one states facts and ru Its about o)bjects andt I~) I,)(; -an dcl c r11ii Ii

whether a specific conclusion can be dleduced given the collecte I'l ll itt

3.4.3 Reasoninig Metliods

T1here are numerous reasoning method~s reported Iii the~ literat ure. ((ulsilulelI . the (lisuuslhii III

this section is generally limtited to the iniire common st rategies and t liise it In hIs rf~tt in t d oii III

the case studies present d lin Section 4.

Trhree areas of reasoning that mnight, guide a 1 1W syst emu tiroigh its know let!ge base Hit Iitt'

" inference stratf;gies;

* iflixact, reasoning, and%

" control. j**'.

Inference strategies are generally based on thre rise of logical ax jonis 'T'li moi st ctoni ltIiii i'reif-

strategy used in knowledge systvins today Is the app! icailr(il of a logical ri Ic- cal i! t /l pm, ii i

129, Llarrnonl [he m~ethod states that if the preise(s) of a ruile is true. t [teli I he c wiisi i(s) is

true. Namely, when A is known to be t rue and ali axiomn "if A, then 13" cx ist . It is %alidl (,j t U tuidcii

that B is true. The application of mioduis potnens ha~s two Implications. First .Ilie inet liod~ is ~ il

so that reasoning based upon it is easily understood. Secondly. not, all valld1 cncis151 1. taii be 0

drawn with the use of mnodus ponens alone. Alodits tolh its (-anl be used to toih I i ti nfetuci g

strategy. This logical axiom states that if 1) is known to be fidse ;il(an) ;ix itin If\ ito B

exists, then it is valid to conclude that. A is false.

Resolution is another, more general uiferenice rule. T1he basis of rest ii ttliW 11hill if t lit-re L c 1tw0

axioms of the form: ~

*A or B

* not, 1 or C

then A or C logically follows. The exp~ression AX ir C is i ailed ilie, rcs '(it -f I ltr'ii~t

of the two initial expressions as lotng ats one ex pressionl has a (1i ni ot lit .i ii' he o't.ti f i

disjunct in the other expression Iii thei geietral case, cincliuskiis rirawii liv IccI.\ltl it Ii a

3 1 %

3.4.3 Reasoning Met hods

Numerical methods may include the use of confidence levels or certainty f:ttor.- ata(:h. to a %x
particular conclusion and propogated as further inferences are made. F,,r inMance, if ,t na. is
wearing a white collar, hc? must be a przest may be associated with a 30oC cnfidcno leveL.

Another numerical approach to dealing with uncertainty is the use of Bayesian decision theory.
Simply stated, this method associates a subjective probability value with every hypothesis to mea-
sure the degree of belief. In the absence of evidence, any hypothesis is assarne.' to have an initial
probability which changes as evidence is gathered. The ultimate goal is to choose the hypothesis
with the highest probability.

The fundamental concern with numerical methods of handling uncertaiiity that, they hide the
reasoning that produces them. 114, Cohen]. In addition, while numbers are ,asy to propogate
over inferences, what the numbers mean may not be clear. The theory of endorri-' nts is a non-
numerical method of inexact reasoning. Because inexact reasoning is a knowledge intensive task,
the theory of endorsements employs a heuristic approach to dealing v ith uncertainty. Endorsements
are records of information that affect one's certainty, including the kind of ev'idehnr7e available and
the methods used to produce the current hypothesis from uncertain preconditions Endorsements
are propogated over inferences using heuristics in a manner that. is sensitive 'o the context of the
inference. Furthermore, endorsements can be ranked in an effort to chosf,, the hypothesis with a
superior level of endorsement.

Endorseinent is siriliar to recording justifications in a truth nrint'nencc sy.,t,'n (''MS) 114, Cohen].
The cr,,cial difference is that in a TMS, a justification is used to decide whether a conclusion has
support, but the kind of support (or evidence) is irrelevant.

Both endorsements and TMS support nonmonotonic reasoning wherein conlusions that are true-S
at one instance may need to be retracted. Nonmonotonic systems generally include a dependency
network approach to logic which maintains dependencies between values. Truth values are pro-
pogated using constraints supplied by logical expressions. With dependency networks, one can
keep track of j,stifications made for all conclusions which can then 1-e modified if previous assump- Z

tions are %ithdrawn. For example, in a planning system, it may make sense to proceed in a certain
way. As more information becomes available, an earlier de, ision may need to be retracted. As a

Consequence. all the implications based on that initial decisiou: also need tc be retracted.

In a monotonic reasoning system, all values concluded remain true throughout the course of the
programi run. In other words, facts that become true remain true.

In addit ion t.o inference strategies and inexact reasoning, thetv are two primary problems associated
with a knowledge baseed systco that are addressed by the control portion of the inference engine: % %

Kt'.5,r-

S% where to begin the reasoning process; and

* what, 1o do when alternative lines of reasoning emerge. 0

l' first problem cat Ie aswrvd by the use of f.,r,',ard andior bkw,,ird -h mnq mentioned in
Sc('it lol 3. 12 :If f tl ossihh ontcones are known and if they are reasonably small in nuimber,
thei a Iackward chaiining or goal directed approach is ver) efficient. On the other hand, if the
rrurnilwr ,'f pef,sible oiltconCs; is large or if the possible goal states are not, known at the outset, a 0
forward r'haining or data driven approach is needed.

3-16

%;-,%0
% % % %

'~ k. -

3.4.4 Redujidaiucy Exploitatioin ON-

Planning islands represent another approach to the first prIblem. Namiely. biegili prtcsin, % here Wk

there is the most information and the least amount of uncert-tlnty.

The second problem can be addressed by deciding on either a ,/,jilt. /'i0t ,r bidiillt-/I ecarcl.

With the more common method, deptfh-first, the inference engine fmcuses on scarclhiig fmt tadl

and descending to deeper levels to produce a subgoal. A breadth-first search sveps ac ross all

possible premises in a rule before digging for greater detail.

In addition to depth-first and breadth-first, there are many more search strategies Oha ha e been

employed in KBS system developments. Nonetheless, a discussion of additional strateg es is beyond

the intent of the discussion herein.

With any of the control strategies discussed above, the inference engine (-anl pro% ide I ie(tsis for ,

an explanation facility by keeping track of where it went to forir any Iparticullar (()I) lusiMi,.
V

3.4.4 Redundancy Exploitation

One of the features of KBS development that has impact on perforniance, reliabilitY and jualit -

is the redundancy of information and processing. This characteristic is in part etc the itr, alurt

of the more common knowledge representation schemes and inference mechainisms adl(] it part t,,

the "middle-out" problem solution approach. Typically, each item is evalui-Ic< or iestcd several "-e

times before all conditions and changes are satisfied. KBS systems are generally bilt recirsivel. -

so a module may be used or executed for a variety of purposes. Use of both forward and ha, kwaril

chaining in the same system provides redundant methods of inference. Support, of nwll ile lis ,f of

reasoning is common in the more complex expert systems. All of these fact.rs %ork to , ide a .

higher reliability measure for the code providing the right answer since it has l)(,(,i, Icstcd wilt i

variety of inputs in a variety of contexts. Similarly, the data or know ledge has been massa ,fd h .

several different processes so unexpected results become less commn-on

Redundant knowledge and inference processing work together to reduc tle ict Ols ,(f u;4 tai.it

and missing data. During the development process, they help to highlight incieoist. \Ve Wit I I

proper development team discipline during the period of iterative changes to the KBlS ills !m

becomes robust in handling uncertainty and inconsistency. Issues of trustwInrthFtr,.- ma .e ti - .

aspect of redundancy exploitation more important in the case of automoinutis s\lcits 1h;1' ,e-1

with more huntan interaction and control. Strategies for its emlhin, mntit Iin /O' :t (li t tin,,in

hinge oin IIe contimalion of research to deline comditions for this redtifidanuid tt rf, 101 (4,

this knowledge in a set, of knowledge based tools used by the de.elo eni t leams % -

3.4.5 Developinient Environnient.

)evelopment envirolinmenlts for KBS soltware have beci allolig t lie niost powerful a\atl.llc I,.als. . -%'?

of their enmphasis o1l a user interface, debug facilities and tight ;,lllliig to tIhe hu1t1gul Igo, "f h ii<c ,

I,llorts in the last. twenty years to creatle a pr,,graminig envirmiment and it ,is fur the pirolict Wit

of large and coiiplex progralis have beeii sueessfil i it providing hiih reso lli gr ,uit s. intiiili

windowing and al, integrated environent to enhance user prmiii, Iit It 1wh, ;rivItIIi the, cle oif

edit, compile., link, debug, and executv. Increased prio iucti'ty dute It, iIs i It, soirlicii ig hla-

3 17

,-, ;,' -,: ,,:, , p ,,, ... , *......,.................... .,..-.:5 .+.., %..,+
. .. %S 5..5 % *. '.. % ..

%* 5. % .p %. -%- %t' %. %- '. . ..

3.4.6 Expliora tory Pr-(graznirriiug Style

been ia cor plshed thtrout!ghI a redIuction of operational steps In the cvyle m'Caid t he ~-b . to (it)

incren -,ittal compliles and function evaluation. -

'rools developed include the programming languages themselves such *Ls LISP. Vl0()lA and OIPS5N.

LISP has the capability to create and embed languages which have tbeer us~ed for -asks such as de-

pendency analysIs, browsing, inference, truth maintenance, constrainit propagation ;tndl knowledge

representation. A class of computers called LISP machines provides the power of an Integrated
software developmient environment by integrating these tookR with edit ors, nivniiiuig systA'1i1, aiid

the capabilities of' thle L.IS P lariuage. There are some hardware eiih;wtceiiwrit: C.hat suppo rt titis
eInvironmient includinig hiigh resoluition graphics display, dlata typle tagg~tig, amI! ifirecteci inm41cilie
architectur res Fu tuire capabilities will include p)arallel processing attd mi emotry fiat tires whIich %%Ill
allow moure p)werftif g earch aii I control strategies to he execult ed w ithli ie mI~ahilt' re'sources

Special tools exist to ail 'In the generation of expert systems. These tools, called Expert Systenm
Shells, are available to assist ;iii the development of many standard architectures for exer ystems
Trhese 4hells provide additional integrated environment services. Itiferen,-e evgiries, knowledge rep-
resent;ition sct-emtes and graphics oriented interfaces providedl by the shells ar-' readily available for
istall i tior1 on at wide vanre' v of host, machines.

The ci inmienria! priliferat on of expert system shells and the wide availalimlity of differing tools
and laiigitageq provides many choices in the selection of an enivironmet.. Inipturtatt consideratiotns

* other t han cost include the amount of overhead that is allowed, suitability of the representation
* of knw-dedge, atid inference techniques that are required. There have beet; many observations

of art iterative cycle of tool building and knowledge acquisition, which may be shortened by the I

appropriate select ion of tools if enough is known about the problem area initially.

There atre efforts underway to provide further power in the integrated environment for the use of
development Ilearns. Other efforts of value to the KBS developers arid project. personnel include the
de-veloieiet of a knowledge based] editor of which KREriiacs is one (,f th,? most widely dociiiented r

exartiples Tlols t,) aid if) the development of K13S stoftware, but. to be irted !)y personnel other
I lair t lie Al dvv.eloprnent eng.,rieers. would include a test, manageinent. asgist ant, and a project,
nianagvirnent ,isoanit designed to Import knowledge fromr Ow. developmen. area and aid the test

learn or #he loanagrment tearn III reaching decisions affecting the dlevelopmet arid test of the

hIcreaszed -apihility III the dIevelopment environment to obtain the best. performance from the
ci inputf er latigiage. ;narhimef I chrnology and development teamt will providIe beniefits to the RM/CV

deivelopfinri ffLrt. III :;slcd1u ,(cost and performance risk redluct ion. Of primary Import to the -

Rncrcss, of K\ bS projects ti at ran have Imnpact on the flM/C" probilem is the needI to identify and -

levvioq, hv+ oI I bit cart be wijs ,' t support rutltiple tearns of developers. Thiis cla-4s of tools wortH

alsn I n(c hide iti- ft lihe t i-ck inrg of progress necessary for the inanagemtent andI test. assistants.

3.4.6 Explforattwvy Progrinmiing Style

lK~~o;;or ~.r;'uoirugis Ilie, ;orisctotis initertwitting of systeir desigii andI imrpleirititatinb
611I, Slif-il111 ng1yo that ioni ajiplicatlioi), are design, rather than st raight imoplemntration

pmrthl(.ihI,(, I lif !wlton 4 explo)ratory Programming allows the dlesign to surface [roin exp~erimenting
with It t i' prw r:m i Inn vss'ern It hiv Ii i and the computer programn are developed together.

3 18 %

% .. .~ % 5.%

3.4.7 Rapid Pi-ot otyping V

This technique is extremely valuable when dealing wit It large arid corttpdex s~st elm, (e-.g. H
for which it is extremely difficult to postulate a conmplete sprciiatiorr. Sortie reasons behlind thIis

difficulty are:

eComplexity itself - a design engineer simrply cannot anticipate all of d ic rcqilirernent s of a
large scale systen in advance of the iniin~eentatton.

o Fluid requirements - for I nstance, dur Ing developmenit, the liardw&are chianges or tI lie part iculjar~~
databases for which the System is to consult changes.

o Human factors - it's difficult to specify user interface requiremnts Ilt advanice hlt erfaces
generally undergo extensive enmpirical testing to deternte whiet her or not lie v :t er ('lkie
and considerable redesign to mrake thent so.

* Regardless of the reason, a large system with changing specifications leads to disastekr %%n he l-

ventional software development procedures are used. Namely, the existing techtnology assumnes I fiat,

the specification is fixed and that the implementation conforms to the speccuicat ion. I I()%e~er.
if a major change in the specification arises, every phase of the p~roject may hiave 1(h e redone
- preliminary design, detailed design, coding, unit test and integration. Of course. Ilie, later the(
specification changes i n the development cy cle, the more work th at h as Ito he redonev. I I iaIllj lotI MI to

compromising the budget and schedule, the quality of the endl product is also Iikel) 1(he al!fecieI
in the rush to complete the system as close to the deadline as possihle.

With exploratory prograimning, the specification Is expected to change as a reslt(4 Ow i ri 1 cfi n-
tation. For example, suppose an initial systemi specification is unuurat cd, O(v I I lo , e Ili I urgi I u

%. to be implemented, soine of the uncertainties may be better unuderst oodl or Ipirliaf), coiidvrn- v% IlI
be uncovered that had not been previously identified. Consequent IN, Ihe specuIicat loll 5, miodIllied
and the exploratory programming effort, is redirected. This iterati'.c process ciniw moo 1int ii at(~
some point, portions of the system requirements begin to stabiliz.e. however, It t', imi ortiaw I(
recognize that exploratory programmiing riay not be an end Ii Itself. lBecaiise of Ie t(nim re\ ,ii

* ~~~~made, the code may be inefficient and unstructured when it first achieves funcimoial ;cdi~tir V
If efficiency and structure are important issues, the code can be reirmplennetil '.i rauloial

top-down techniques. By the time this stage is reached, the specification is it ltkr'lv. t, di;iwgv in
a major way and the i mplemnenntation is riot, expected to lbe d oe mu ure I li an (,wi f

levanise exploratory P'rogrammtiing calls for qutick inirplenitlat lori of ;t S\ i. '' I, pi -, gnW%

pietfortmeds by at sti 11 l devchurpinr't teamti comtputer systetiis (outtdicive ho Illis acI i\ ii. 1111-1 u-1 hIii v

the progratirer's jurohuctiv ity. Nainok, prougrammnuing t oorts slich as. I o-'c(II l-us-o i I In 111'
91lbsectilon tmutst. be available to the ilevelopoent teanut

3.4.7 Rapid Pr'ototypitig

Viapid jitot.otypifg intvolves a process of recycling t lrroigh -;NsItliii;r h iIHdi c- i Il.

order t.0 (determuine thle validlity of at knowledge reprenitation - clwlu(!>.uIi~ :..-

:I proutct of this ptun-ess, represetts ari aspct 11(s) of Ihle \c'prt \<~~ c .. fi

denrllutst race Ilt What niatn er encodedl fac ts, re lationushiup ati I i rferciiu c t ra t i(i rlc 1h 1 ,pc r!

A V% N."pI.

Jlk~~~~~~~~% A9. Af -WV W1LATUP' 1

3.4.7 Rapid Prototypizig ps

knowledge. T1his sectlo toilitliv the Ie cyclic nature of rapid pircototvpiiig a;il M~t i'!(hltti

iii relatiosi to At -IRe devvipmen

know ledge ifl nt, pei if ic it ;st runtic tres. it ferentce rules and (-titl rAd st rat pC ws'1it 't -vxIs p i it,it v c
the i iplement at toin of a din,t r at ion prottoty pe lin order t o t est the adequ i 1 of (fie I liruializitioriN

The protott, le'-, knto wledge hase Is implemient ed throuigh the aid of tools il-t P.,illielligelit edlitors,

laniguages etc. '% loch. if it t;vallil~le, aiki A.veloped P~erhaps th' ji,o:i-i in-p'rt itIi 45tsit tif thet

protot v r lies lit the sviele' k (I Kl ,dile represent ation sctit int.

TIhe (leniwtt ral tt 11r tcl p'' plirpis' ridti lit 1r(,% ig tile feaei it d oh .In it tet-(it li cirdit to
obtaint a lf i cial COmi iii -tit f i iti 1 ier awil ill let'5 ii (erta~a Q1,ei -. f , ltl (uleliitl I nIihl

socopirtg arid repriseit atwin 4 t it Iotain iT herefore, hesv y user iiivolveiiteiit is ecis.sary u L he

financial sticreis of t ftc slyst ciii anA~ a st rong dotmain ex pet t controltiict I rejiti Ired to determine

the sy'st ein's iccutra(l, lit fact , the expert uisually works alonig * it the knowl.'vdge enigineer to
discuss probletisolvtn ig strategies throughouit all the development phases. ViItliv rely, the expert

recognizes arid points (,it ieffective probletr-solving teclnlups in the prot itvpe

Houwever, iIt ittlc(e (If t hte prototypc also depends on the %bilit~y oif the know, I,- sgc engineer to

foritikilte i 'Iii of perforitiatire criterion with well-dlefie! iput and(output, for t est measurement

ptirpoiseq. lw Idea is to facilitate an expert's ability to recognize the prototype's efliciency and ac-

parcvl;rt idlarly withi regard to the knowledge base and the inference strutreOeknwdg

eligitvecrilig technique includes the ilse of predetermined case studies which are initially reviewed in e

art initerv iew w'Ith the domain expert and then compared with the prototype's means of handling
the qatue informiation. The expert mutst be aware of the prototype's ptirpos" to properly ascertain
its fuinctions. Tlesting becomes more complex when one considers that a prototype only reflects a

fra,t ion of the qystem's acttial capabilities. Frequently, a prototype sacrifices performance in order
to) ronretit rate)ii funtctionality otr concentrates on the user-interface arid sets aside system func-

iltial it . The expert '9 involvement to test the prototype,, usutally encouirages more determination

to gather the uppropriate knowledge and alerts the cxpr7rt on how ttie qpsteni funotions in order to

knol,.% how to Fillt, tifle the actual productr

A suiccessive refinement of the prototype generally follows the demonstratilon. Trhe prototype has

so r ved a pi i r poiis o I tlenit I fl, errors stich as incorrect inference rules, invalid k nowledge arid inaccurate

writ rol strategies. Anot her cyc-le through implementation amid testing corrects the errors and brings
ipl firt hecr pr(.Nerrlat lc area,,. Prototype development from the iitial demonstration to the mature

s4vq~t cot ettis o linvolve a five step process: !67, Waterinani

" hitey rit ratiot prot citvpe, i.,

" researc h pri to(type

* '(roil I P1iw d l n

3-20
L~5 IL

-- - - - - - - -- - - - - - - - - - - - -I

0
3.4.8 -SitiaI1 levielopiiienit Teajuis

The demonstration prototype, as previously described. attemipts toc prose the fcasibjlci Iof a sl, sI en

for financial support purposes and to test the knowledge rt'prc'M'itatiocii anid prccbleni-deiiintitn

techniques. The reseai -h prototype is generally a ineditinri-sized prga wit pcjo~v 'rfcii jerforiniac'

capabilities, bt whithi a tenidency to siifl'('r from itislillicrerit testill 'Ig l Iheldc'. pffl , %i H 'c, ;III~rgc

to large-sized program also displays good performancc. However, tlit(hield 1crotot.%-p Pc1' rs froit

the research prototype in that the system is iiiii'h moore reliable O(ccalise of' c'xtetiisi\ te;t lg Thce

production prototype tends to perform well, be reliable anid fast. Oftenitimes, the jprodtitioii

prototype has been reimplenerted it! a Toc -(efientit lan~giage Flinally, few svst ems, act inally reach

the stage of a mature systemi w Ichi is a prodtiction model used coniriierc'ial I

3.4.8 Smrall Developien'it Toaiiisi

Although KB13 systemys cc cst r cct ed to (late are large, t hey hiave tylpical ly beeni dec'vlope I 1) ,' N gluii

teamns. In 1982. a scirtcY w.Lq condncted with the intent of estiilciilig the nccinbcr ccf liialiv.earS

required to build 'arious Al systeums 15, LDavisj. In the survey, teni systems %%ere represc'iited,

inchjddiL: thet well known MACSYMA, HIEAR~SAY,)ENI)RAL. NINVIN. PUFF~j- lI)IOS llE(", 1'

and X()N systemts Otte interesting result of the survey is that every SvStremic iclid(e was dlevel- d

oped by an average fcml-t inie inanipowc'r effort cof tw.o to five peoplec'

Inj conventional socft ware syste'rcis mht're the rodet I.,; gc'nerallx inucc,(J ay;~-sid [ici yis' arc Io35I VOf' /

coupledI, the procjec t. cani logicallyv support a large staff. N amely, one(or mcore pceopct'le 1~ hc &ssi g iled

to dlesign , codle and test Pa(h uiajor icodrile Tlhis con1cept canimot be ext erded to K1(IS% SteUris %W

where dleveloipmecnt dclcue tiot fcllow t c p-cowni, iiodiflar techiquIIIes ,

The d(evelopiiit cur c'sxlt-r prr ysteins requil res people wit Ii a variety of skil- 1k'lii' fcc1ll W i, h rea~kdoc)W i -

itypical for a o el cI 11 liltI probl~emi dc immain 67 WatemtlP
U%

9 Domain expert (75' corninitcil'it) V

* Senior knowledge engineer (25'% (ommritinent)

* Junior knowledge engineer (100"; cccmmiitin'nt.)

* Prograrnming support (I (X)O' cobnic tmneril)).

'Thce tilct il c'tlcri Ild I Ill i.' lcc i"' mrg c'- I hc.'c [cr11l-i uic.' Icr fcssiccr;0,s W .c11 'l1it 1.\icI I cl i i -ic '11(

ic J",c.c icciI t 4c1tcc' '-%'4ci s c 'ii' llc >Iiciccwci 11 -Ic vIi ld \% (h'1ci ts 1c ',. t '. f 11. ;f.\ cc" *I' .

frat~iil Its a fticu ccci of crc'jv'cI ccmiuiplcxti

0 NFdlerat.% e 1l 11 c l lt pii '- c'cphc.,

* lileuli 3-5 poi~ccl'

* 'ur clilhiccllt IA -tcolIc %~

In all c',usec, it. is c'r-ccal tiat a comcpacc itsiirc' ti., cc''Ii c I 'I . 'tH I l

d'.xIer.(s). Th'e e's pc' (s) im ist (if., cc I, ill 1t 7.'(4f 1 lic i I ic cc c t'' CI,'

Millc q i cc to Im f-tiucc icc'rc';cer ilc c'ucsmc' ther pioSslhclI1. jcl i 11(~ c 1,-j,

%~2

3.4.9 U~ser Involvenjimit

The knowledge eiig Iiters (,it the project extract information frc II t Ii' (Ii ,ztauII kcxi eri (,s ii,l cicd %l(~

his iiiforriialt Ininto the chosen mtethod of knowledge representil loll TI, t --O .iigitteer-

may actuall v coiist. r ct t he undl(erl ying framework in which to encode ii e .oi iain' km edge or

purchase an off-t he-shelf (eveloprnient tool to do so (Sect ionl 3 4.5)

Programmriing sii1 port can he used to aid thle KB13 and,'or coflv(1~laonid pr~g, tiii n g vfloride

pending onl the project needis Conhventionial programminig may~ he fleedld to rmpl.'teit (.t(ilioleId

goritl hmic port Imis of tithe s'~stern,. or to integrate the qvsterti with eXjistlIng A' ft wire-4wi'I as datbies

or semtsor itipilts.

Sinal I(levelopti ietI teal Its const ructing large systems imnply It Ig h produc I~ I(- ' %II,% I cati llI it et Ibr

often %%o(rk at or above t heir ahilit N to mianage systein comiptt'xit i'. NOItI e (h I*t'IopI~lIcII

process iq '1t rongly influenicedl by the(availability of powerflil software dltveloictlit tools (Si. ti1oii

3.4.5) t hat help toi manage this; comrplexit y.

The small development team concept also seems to preclude the neced for frequent dlockumerntationi
since Information can he verbally disseminated with relative ease. Namely, changes made to a

program ran he verbally cornniriicated to team members elimnyating the ri-vd to generate docu-
inetitat.iori such as, Engineering (.lange Orders (ECO'R), revisions to previous systemn documentation

or even inth-ral uiciiius Q

The miajori1t Y of t lie c ase st it(lV evaluations show n in Section 4 inrd icate development teams comtprised

of less than 6 people. This observation is generally consistent with the literature. On the other
ext retme, where systemi comiplexity and magnitude are very high, the size of thme development team '

may he triicu larger For example, the team supporting the ongoing production' of XCON, a DEC
coiniputer (-oifiguration system.i nuimbers 35. The project team is broken upt Into four major factions:

*Adirtinistrative support (3),

* I ,er 'qupp-rt (5): dr

* led1 if al zuipport (coniventional software) (6)- and

More Ietaill pertaining to thle X('ON systemn are presented tin Section 4 and Appendix c. Trhe%

poit iq t hat tII,, ;cale Lrid cornplexity of SM) BIM/C' systems mnay be comparable to XCON. If
hIi i the c, '-o'Pt; r~ictI lol ,I svstcr(,is in thle SI context, mray deviate from the concept of a small V-
le~velo;'ircew l1tci e r .

us-er rnaY lw siiyipl% Jfinedl as anorue who usqes the KI3S system, Including the domain expert(s),I
kinwwldge errgmil cr(1) to ,d hut ldIr(s) or actunal endl-msers. 'rhe tool buiders may he involved in .

dehug gi tg thle \ stci u ini laer t ages. whlereas the knowledge engineer it-es t Ilie tools available to%

imrplenrt Id rruu' the(sstvrri knrowledge Ali cud-user can he thought of as the pers4on(s) for

%, rimiul ft(idv%1t]r , i e' ' ed Although essetitial, the importance of etiul-user Inivolvemnent in
the I(1'S -Nqtetr,1 rlvelopriwrit processq may not b~e obvious. C onsequently, it is iisefiul to considIer

he stagesor ysq u dcrv cICTl treit i which end-users can positively influence pro'ect evolution: % %

3 22

%a % %*.%*.a* % .-. N h .
4?-~. j'--*a--.V , e~ .. J.

,~s ~ % %. % % % %. * 'ae%- a'

q .~~~ System definition - Similar to it cont~enitlial 111A~r iJ I ;1 i ti ha I lioi '14 111 i

meet the user's needs. Coiispilueiitkt, user Iniput jiiiit lie kIsidireld fiti If, .N -icin -1w, III i;tolnI phase.
"Protrityping - As discussed in Sect ion :, 1 7, protot A ping atIlm,% 5 Il(hi Sers I i and] .e

comment on the evolving systeni. A part idary Imiport alit feat tire 4f aN S'. steill 1, 1li-i user

interface, which often corliprises; aait segrie ti t ,f lie to)tal s still lor e \ ampid if) t he

Dipmneter Advi[so r p)roject , tY i f,1 , it I hriakdo)wif fiI per (lit I g()f Ie , was (d -er \(-Idf

Smithi:

- Inference Engine 9Sc

- Knowledge BIhse 22 '

- Feature Detection 13'(

-Support Enivironmiient 15

-User Interface 121'

Thie amnount of effo~rt, expended on dleveloping a user Inrerface fi-r I lie Iipit et-r W% . oIs

consistent with other projects whose Mtint ions were t, iifac ut ate. rilimlit l ill- ~ns ; n

non-sophisticated users 163,58, Stanley, Schwartzi Furthiermol~re. if the ,tcetii Is Iii idii 'sorn

to use or if the output, such as results or error mnessages are not (-ar and relet aro ii~ors are,
not apt to abandon existing matial rnethods.

Explanation facilities, whereby a systemy explains how solutii ins were rea;(lieu are ak, ;i per-

tinent part of a user interface. A user gains- inore co~nfidenice lilI he s'N ste (-i henw lie h.cme

comfortable with the reasoning process employed to reac-h a conciisin (s) [I'l(ie ~p1; i at IMI

data may also be useful to the tool builder arid knowledge eligi ileer Ini illg g I tc %St elii

o Testing - End-uisers arid the domain expert. often play art import ant B deI([it 1(,t Inrg 1).% III pot h-

esizing test cases and/or reviewing resultsor

The majority of the case stii(Iy evalufatitons presentted in Sect Ion 1 ifidic at I, I flat It i e r I (T I tit lll it I
was actively involved in systemn developmient arl(] that user satisfaction "it, oft iii isedl is h ieasunre

of system success. If the uisers are an integral part of the develu)iietit prmc:-s. I lnv 're- liss Ilik

to feel threatened by the system or experience the "not invented here" svttdratn;e 'Ilte reiiltN
i t g roll1up 1I of us;ers wh loo(I(wk IFo)rwa; ,rd to e cIv i i i)1e t iIt i i ilI lgt o 1f I i I 171 It t 'I It 1t i) (1

* fiilitle Iheir jobs

Th'le enucoiurageent of utser input1 I lirotigloutt aM 115SN'stecut dv,liuiiieii pr(, N -lilut- fi,, I:: a!

% (-i iinveiO.Iili suuftvlarc eligillerilig proieut %Nliereby a iredlefiniii ruimil, er fJ re\ Iv, ire It, 1,1a

fixed pinits (Seiction 3.1.1). Perhaps ill rcasedl user Ipartiuipaio 1(11ilte oti',tt(ii rld %\-ll

lead to fewer iiisiidrstI Iuntiilgs concerinlg syst (,ft f 11l iililitt, atild a It Ii t(et -1 t I ra i I (1 .

of ciisl omiir accept(an(lle

3.4. 101 [h 1111 D o i i t Ii ton P rotti li(ce

Thew :bsewiie of an tigreedl tiilin mitill or met hd fur develiiii I\ I:- I'! I ~r<ii i i

lack oIf agit shtnniliril ril;ttid to the t.i 'js 111i1 kuuudso (l lite t t ri;i i 'i- ir Irth

.. .~ aJ j .'*. 2'-

%~~~Z e::~~ I? -* % at% %1.

3.4.10 Docimietitat/oz, lrmduceo d" .

development and siipport of KlPS systems. In Biiddirq ErIpt "t ,S ,iseti.!35. Ilaes-iot.i. :,' Iauthor -

disciisqes prohlem identification during the Identification stage, delinmug key%' coiltlts ar relatios -s

during the .'mocieptiiJ phe' and de,.eloping partial specifications di rinr the iF,.ri- d: in phi-wc .,

All of the;e e\ v1, lia%, i rtferenoe to information that could well I,, rp;nr.d Ii :iw formi of a

dociment. For irt aice, there are nliter(t s references to providiiig user'. dociciinial iot on hlow -

to run a KIBS -vmt it IHIcm ever. there are no details concerning hat level of ,etaii id w ht ki d %-'

of infornmat ion sho'uhl bc included In the documentation for tire sy'4li 3%, I II es-ltl i.

Other documenit reqi iremrients in) the developnment of Kll. sv>t n alA' 'It(- ' l in w hhh li ,_he

develol'.ient of a paper knowledge base, a knowledge acquisi ll'n grammiiar. il ei iial know letlge ,mq

formats, kntwledge base, inference engines, and interface are all prcsentct ;t irprojecl docllnieli q

'20, Frelit'* The dcnimientathon scheme presents infoririatloll that resuls fioT it Nlx .te'Irl(t e *

defined as
*fariiliari~atliii:

orgarizitig k n c', Ic ,

* retpr.i- itiir k ', (',c .g.,
.% %

' a(imrirg knowledge;

" i,,ferrim,, strategy de(sign, aid

" it rrace design.

On the X('ON project at [)EC, the functional specifications were understood rather than written

becaii-e of I he ongoinig revision process that occurred during the development 159, Scownj. Design

sp'eic i(at ism wer," eiihodied in the roded product since expet systems do not !end themselves to

defined allagrit hmi soltitiiris whero specifications can be written.

The t,,'. I for flo iuneittation otn K B projecrts has, to sotm' degree, t een driven by the nature of
Kil, developnients that have (occurred to date. First, most KBS projerts are small with 2 to 5

(levelopers involved. Bfecause of the linited number of developrrlent Leani members, little need for %..
documnit at in exists. The iterative. nature of KBS software development efforts also make it very

difficlilt to, determine what and when to document. It is clear that a problem definition needs to

be agreed to biit that implemntation should not await col)plete definition 'rie introduction of
an earlN prli<1type hlads prject ; to prodice a working model for the customer so that feedback

and proof of concept can be demonstrated before a large commitment to the project. is made.

Flie ir',,,hw, .sm, t1mn,, qu, ,'tl approach allows little documentation time because prototyping is

oriented toward,; a pro'luct approach rather than a process approach (as lefined in the conventional %
software (li'velopmien -world)

.niot itr f t or airt m iii t , i'd for don mentat.im is the tools available o support Ilie devel-

opment of 1I11, sstr'ms Sonw of the environments available provide a level of sophistication not-

generally seen iri ik',tinciial so ftware developments. These environments include various graph-

ical anid widl,,wug l,,)ls whi ch allow users to do (evelopment in an environhent which does not

rely llpion extI,,isve pailar dlocum'entation.

3 24 k

%,,,. , N. e, , -e ,%4~~~V'*. .%- a

3.4.11 Tosting .

Finally, the research and development nature of KBS projects put then it i t categorl, where tcii-
nology feasibility is of the essence and not the ultimate deploymnit and support of tihe prodiici

lit these casis , emiiphiasis is certainly [lot. Oil hx'rII1ar-1ear(.aI0uu 51(1CC aniana;gvan'lfl iMN,11i 11 5~i.

different flavor and users are not expected to en~ter (.t(- pict nrc mild1 som~e 11((i et il 11nh;111 fliiIe ,

point in time.

3.4.11 Testing

Testing is the comparison of a system's (iCtual behavior with its zitt I,/(b S behavior.

In conventional software development, a developer is typically presented with a syv iii specificat iii %.0

which is a statement of the problem to be solved by the new system and sortie Idea of what a ()lilt loll
to that problem might he Implicit in such a specification is a funrctiotal statemntt of' I hie -N sit 111Iii

behavior under a number of real or envisioned situations. The developer takes (flat soecilical inn

and euubarks onl the software development process involving several steps:

" Rcqutrrcrits Defirtticn a first level decomposition of the juroiulerii and criyisioii((s dui' i

and an allocation of requirements from the systemt specification to the ighest, lr el cotihonils

of the system.

" High Level r~qc.'i

" Detailud Design. 9

" 0xding and Do'bugging (or unit testing) li which prograin code Is developed and si riwi ii I

as opposed to behavioral, errors are detected and remove(].

" Integration.

Following the integration step, a completed but unproven software System (.Xisi', This stf it

should exhibit the developer's interpretation of the system behavior defined lin thci specitit at loi

Th'lere is4 tio wmstiritice. of course, that it. is the problemt sollutionl suiggest' ('I,.% I he Specthic;uI1 'i 0"

lit imtrallcl with (,t(- developinent team, the test team translates the c us otneir spec iiica;t ii lito I- I
procedures that trlodel the system behavior iii terms of stimutlus,'resjpotse pairs (as Ini 'Tush ithe~

hiuIo n; the light turns green" or "Enter the filec nam~e; the systemii respondsl~ 'no such idc. 'Ill

9rw s Uffi lv e-O Of.511oli)w ihtli pcfctm sea ind o se n lr,"ic w l

0 St

A6

N % IP.i l A .W01 is 1. ii % ~ %.%.% . 1 1 0 - h in w hic he s.' lie .eu . r.u. .c " .. P ?d 1 , . Ir J%~ 04u icilc 'Io6 u % %
w~~~~~ ~~ %ite cxii~ ttd mleo e e u igte(eigipic~

I

3.4.11 Testing

Because t lie conventional software model usually requires that the test. proceduires be ap,ro ed by
the customer prior to the initiation of any formal validation/testing, the proce(ires are considered"

a correct interpretation of the specification. The test process consists of comilparing the software asi

built with this "right answer."

The ability to specify functional behavior, as is done during conventional software deveopiie ,,
implies that the problem to be solved is well enough understood so that exectiio,l details of the
resulting solution are known. Specifications do exist in the KBS world, but they tend to be .roblein
statements without much of a hint as to what an acceptable solution might be. .4.
As they proceed from the problem statement, KBS software developers ofteii enlist the aid of "
"expert,; to guide them in the direction of an acceptable solutio. This riniits the geiernit1i ...
of a iystein which displays some approximation of this expert.'s idea of solut lion hIavior. I'ecais.,
they desire independence from the development team and because the number of experts is limited
(frequently t~o a single individual), a similar approach in the preparation of test procedures is

available to the test team. Indeed, even if a different expert is available to assist in the development
of the test process, the potential for disagreement with the other expert exists. The question then
becomes one of determining the "right answer." In this case, unlike that of conventional software
development, the customer is a doubtful arbitor because of the fuzziness of the original problem.

Even pre-nming that some approach toward generation of agreed-to test procedures can be found,
addit onal problems plague those charged with testing the KBS system:

I)es t le system rorr'tIly reflect the knowledge given it? ,

* Is the knowledge given the system correct? Who decides? Systems can be envisioned where 0
this may not matter, at least not in the same way as conventional software, since the product . ,..
may be self-correcting'. In this case, the question may become "When the system discovers
that. it is incorrect, does it move toward correctness by an acceptable amount?" Again, who

J1qt as AIl solt ware is urged towards solution behavior by prototyping, the testing of Al software for
battle management should be prototyped. Examples where this could be applied include DARPA

tategic Computing Programs for AIRLAND 2000 and the NAVY FRESH program. Additionally,
* ipgrades to the PATRIOT and AEGIS systems incorporate Al technology. Experiments with their *

test programs could be undertaken.

I)evclopment of a tcst advisor knowledge based system would enable the test community to analyze :
the test requirements for systems and the results of tests more efficiently. This would allow fuller
test team participation from project inception and give the benefit of a learning curve that included
the prototyping phase of system development. Such an innovation might then permit combining
the fairly conimnon "build a little, test a little" Al philosophy with a new "test a little, build a
little." This latter, implying examination of evolving requirements and partial systems, is as much
a driver of t he system result as the evolving system is of the test process. There is a synergy in this
effort to define goals and criteria for test, tolerance and performance. As both test and development
teamns identi!f. and commit to these, the problem to be solved becomes less certain. This strategy
w-ol correlate well with a spiral approach aimed at minimizing system deveh)pment risks.

,vi . I . ,Ih (',11t1.'1 lile: ,t, i'e and San(der's survey restlts iudicates that self-c.,rre(ting s -tware is not , 0

C 'uiiu~u, cii reuce. -

3-26 4.

--%P '? e.Fv %r-. .e *.-.

% %

''h.''' .' '..N '_.-_'2 .. X ¢". .- , .". • -". % ' "'?,". "-" -""" .""" -""'.-""-. '.''" -""" -""" -" %P " '" '

% ka%

-f"Nft. %

3.4.12 M/an ago n eit ('on ly(,/ Afech' ij; isll],N %. '

3.4.12 Maniagemizent Control M(ialaiiis n v.i.

z0'

K BS projects are typjically accoinpligliedl by smnall devclopmieiit I ian s ;ttti l-cfrefieh d 1,4t reqim, r

the extensive management control mechanisms that are usually necessary hor large scale l)()1) .
system programs. Most Al research and development projects are developed by a single teamit with
very little interface necessary to other organizations or systemis. Their control usiially co(nsi't
of periodic technology reviews of actual versus planned progress. Til. review process is gevierally •
informal with no predeterrnina!tion of what information will be discussed. Th'is 5 in contrast to

the typical large scale DOD software development program which has planned managelieit and
.- oft -. f

product reviews at various stages during the development process. These reviews are eftei exteisive "
requiring a large resource committment.

The management techniques employed for Kt3S systems is complicated by the iteralive nature of 7

KBS development. Mastery of the traditional software development model has hardly been at taiied
and KBS systems enter the scene to present a whole new problem set, for modeling, It is clear that <
few managers even understand the world of Al let alone know how to manage the higltl complex "
iterative process. Considering the difficulty of scoping a domain within an expert system aid lhe
defiaition and building of small increments, it is difficult to conceive of a meails for miainaging
and controllin; a total KBS development project from requirements Io product delh, 1ineit aii •
retirement. For that reason most KBS developments are actually level-of-effort deelopntets. 'l'hat
is, only near-term schedule, cost and performance objectives are defined. Progress is then mIeasured '.%
in the near-term and not over a long span of time. Since there are no proven softkare cost Iio~dels . -
for estimating KBS software cost and schedules, predicting tie future is even more complicated ft't1%

The lack of a broad historical data base of){BS software costs and schedule also oilers no Soh 011 -A
or aid in predicting costs and schedules. .%

Within the Al system application area, there have been few systems that have been de\ eloped under ,

the constraint of schedules and costs normally associated with DOD systems. K S acquisit tois. .
which call for the development of systems for delivery to the DOD within a giveit titnefraine, are
just beginning to appear within DOD. These procurements are normally of a standaloie exper .
system which has little or no interface with other systems. It is also noteworthy th,it Ihcse s. sttis . -
are not real-time to the same degree as an embedded Battle Managenent Comtmn d ;tol ('ntr ,l
System must be.

As KBS system applications grow ini size, there will be an increased ieed Io, divd I tie pronitl

soltittoll 11tto4 1miagetilile ntiiillhs ill order to develop Al S.stiii llu der dicftti scli' Lv ii- . 0
c'0ls It. has beenI sugge.t.ed that e Ctlit-s be derived ill the it1aintt ina ilit X tcsillltic \ (l (d i \" ".

ires by applying itodularizatiou [17, ()rciichl. Management of large proic'cts call J'(1(it:all) I"* %
beielit from a mo dularization approach by providing meaningful subsets of a sslvn (,,n h ,_.
giveli teait call work on. One tf the experiences from a project the size, f ('0N Is t t i ri, t 41it
suiiiieolie iiev, onto a large project (all take a significant. anitlillint of tillit t) ttto' fawtml ar \\ it

the desigi. Modliarization should allow individuals ti, bIe(onie pri)ductiye 'u ier

'IThe ke. to maitlagitg a KIIS project or program is adequate Insight tutu visiad lit\ l ' 1i t. , f..

ipittelt. process ill order to assess Ile still us and to predict liete fitire of i tc in, ;t :l' gt.li . '

poini in lt ine. The evollitioiarv nature oft lhe KI1IS develop ieit lrocc- (ill\ hriltur

Ile mnaliagement job. As KIIS applications continue to expand anld itcreas(I; ,,. iiu;tloiicti:I't.?

,ill l e bacd wit h rtlrl her challenges imi itianagitig anid ont rolling the heveln \) t preit t --. -

3 27 ,

-. ~ -'t. - t. % %'ft" . ft .f- ° t-.- ft" o°,% ' °.. •. % t' .° - ft. ft-. . % * .- . ** -f. , . % *ftftt, °'.-. % -- °.,. "..%-% , ft% -

17.% e , 0 ." j"i ,"i.-e, .. ".% . . ."e% ". . .'..' . .. °..."." ' %. . , ,"..%.% .", . % °.". %r 'III %, %,_

3.5 Difiicvzltiesi in Developing Al Stenis.

l'able :1.5.1 2: Artificial Intelligctict, Soft%--are 1'r(oblE'i'', -

ARTIFICIAL INTELLIGENCE
SOFTWARE PROBLEMS%

Problem Statement.
1. The rapid prototy ping method does not offer clear griidain.'

onf how to produce a well-enginet'redl commercial j'rniih~ri

2. Little knowledge exists on how to mianage the transfer of

progress,,ive and evolutionary clhInolo)g~

3. There only exists a limited number ot emgilleers ifl AlI soff ware
developmnft

.1. There ianedfor multiple, specialized repr(-eilt A' I in -

the field of Al.
5. The knowledge is often ill-specified because t he trxpl-rt cairio,

always express exactly what he/she knows ahcul the d&iflail,.e

G W~ithi rapid prototyping, the system is al ~vays In aL state of
flux.

7. There exists a lack of knowledge regarding testing of Al sys-
tems.

8. T[here often exists voluminous amounts of information in thie0
definit Ion of an expert system.

3.5 D~ifficuilties in Developing Al Systems

The following qection is corncerned with identifying Al softwvare problems cited from a literature
%* /

study ' v riertakeii at Sanders Associates. Inc. and the case study responses received from the %.
Sanuder-A AlI Quest lonnaire. A comparison of Al and conventional software development problems is
made. The lit eratuire study examined major problems that appeared most frequently in different Al
qu~tware suihcaegories which are defined and outlined in Appendix A. The case study problems deal
with those Stipulated in one or more responses. The comparison of Al and conventional software
dlevelopm0ent problemis compare- anti contrasts common software problems and issues.

3.5.1 Al Software Developmuent Problemns Cited in tfie Literature 0

Certamn problemts In Ml software development were cited in more literature sources than others.
TFable :' 5. 1 2 litt, tlie eight problems which appeared with the most frequency. (See Appendix A.
for a c riiplet e exami nation of all the software development, problems identified in the literature U

-ou .e The remaider of this section examines each of the frequently identified problems in more

3-28 .

~~~ % % %- %. .c-- . .. . . .*~*. *.~ .P /% J % U ., .:



3.5 .2 Al Soi'f'-wo~:-f P!-ob'111t4 Uhsel.'ed inzo (,Ie( Cast. S ale

Al software development iq a relatively youing field Wi terpr~r vit h coirvetw ionl sir ire if-- 00

velopments. TIherefore. difficulties A ith identifyin g arndU umiing tli(t best roarlls I o dok I -)

systems has arisen. '1'e probem I corripoi)0:llded hV (!w fat thfat onle 4f (i fif' >1 idc ((1 ,0t

methods for Al software developinier resrdes Ii the use! of rapid pint ,t ypinrg, %, Ili( tl(r it aki r ,.P

guidelines on how to produce a well-erigiricerrd commrrercial product.

The lack of well-defined software staridrrd- methlodologies filters .niti I lie, I~roI pr mraliagerinitl

of Al software development. Al ro te. re confrronted withI a progressive arid ( frwi ( i a r)
*technology which by definri t i'ia ntar I htt V gulidance on how. toc properly niarnigc l rople arid th lie

*effort. %

A by-product of a now tec hriology car Oe fouind in the limnited in umber of ex perienced sprsonniel

Al software development is. hurt by both tihe lack (of available arnd, or experh'nced crlgriers Or

managers. In order to dcej~op standards and methodologies. Al needs, Speciali7ed l erorli to, O

determine an appri priate set of standards to effectively manage and guicle an Al I f %-, m effort

Knowledgeable tiirgi reers could help) improve the k now ledge acqu isitilon procs,, the i rnialr Iaht t leiie- k i

in Al I si t 'varP d-velopment, by proyvidinug effective technique's to commiiuniicate withf the dobuir i

exlp.rt The e~oc,3s of extracting knowledge for incorporation into a knowledge base. is t imie- 4

consuming and difficuilt. Adequjate gathering of information dependsh onl liet k<nowllg enginefer

skill at extracting information front t~ie donizain expert who oft erit ines 1! I dfflic Iili es i

what he/she knows about. the domain N

The success of an Al system dfepends on the ability of the knowledge engineer to fori milale ii setI of

performance criterion with well-defined inputs and outputs for test rxieasii renr. piir-poses W\ith Ii
rapid prototyping, the Idea '1s to improve an expert s ability to recogn ize a protot jw ps accuiracy 0
particularly with respect, to the knjowledge base and the Inference si rlict ire inr prll tVtypc %,

only reflects a small fraction of t~le systemrs capab~ilities, arid inicert ain nI- ;i in ajor fat t or Ili [ lit f
selection of a solution approach, testing becortes more complex.- Also 0hw ,)irstitril Iv chli igiit*

requirements Introduced by a sist emn whic h Is in) a constant st ate oftH trx, e''it , 1huitr I tIhe- I;rlit

to effectively test an Al system. Once again, the proicess Involved iir test inig, AI .stvniios arid thle

lack of knowledge regarding testing of Al systems seriously -AffiCts ti,e Al fcfiA r le\eomrieuint

effort.

The last major AlI problem Identified comcerns the need to de1(1i Hitl i aslk I) ;1 ptn Iii

buiilding an expert system. Know ledge-int ens;ive problems mray not be c Itar! tril ild tok r ht~
iloinulaine of probleri-solving irifoririat n i.s bounded, lie role I e i ,'IIIo ;)i .. o

W ot, lit sutileniti(ly deifjied (o prodtI(e at well-definled arid tCi(sI cl

3.5.2 Al So)ftware Prh4ots()srve frotit t le(, Case St tidies

Nfitiv comrinmon AlI soft ware det\.'ll)piiitri prolienirs call fur ie'nit i elA wecr i ''ii i1

erer) fromu thre Al (Imest lotnraire (Seel AjpendiX IV). l ibs-'I fl cIrneit l\ wni oiw m lii! ,%c,

0 it lar(k oIf experirtice mri riaraging cxexrr xserns.

o i I wed to ( fe k lit)\, l-d re t iiglior I roii r ask" F ! f ic :r kq 0 : 'K

* au lack I ilontiiir I,\perl cot illIitie I lif I VIIIj N' iii Wil 1!4ii s .~.

I. .* .. .. .. .-.......-

.. .p ** P w4p

A. % -. % , %* I .p. p '. *. %' ~



.3.5.2 Al Software Problenis Observed from the (ase Studies s-p

* the need for better testing methods.
-b

However, a variety of other significant problems also surfaced with regard to:

" the need to develop a prototype;

" the ability for a system to support the views of various experts:

" the need to allow for requirement changes;

5 " the need for continual financial support throughout the Al system development effort.;

" (OCUIiiit at ion; and(

* overhead introduced in real-time systems by shells.

An examination of these problems follows.

AI lacks the required historical background from which an appropriate guide on how to develop a
well-engineered product can be extrapolated. Consequently, management does not have the guide-
lines or the experience necessary to help in the administrative process of Al software development.
For example, the system's success depends on management's ability to effectively allocate and man- .

age domain experts and knowledge engineers. The need for a domain expert's time commitment
cannot, be over emphasized. Appropriate knowledge acquisition, effective problem-solving tech-
niques and schedules are highly dependent on the expert's knowledge and availability. Without a
committed effort by the domain expert, schedules are delayed and further expenses are incurred.
Another problematic area occurs when knowledge engineers are not provided with management's,'%'%
support to spend the necessary time and effort to design the most appropriate knowledge represen-
tation and inference mechanism. Some suggestions have been to encourage the knowledge engineer's
creative mind during the prototype phase by freeing him,'her from administrative duties.

Another problem area for management involves adequate testing and maintenance of the Al system.
Unfortunately, Al software tends to be more difficult to test because of the complexity involved
in demonstrating the feasibility of concepts with regard to requirements. Generally, because of
the inexact nature of Al systems, multiple or even thousands of test results could be the correct
rsponses to one requirement, and thousands more may exist. Consequently, the need for a more
appropriate means to test Al software has been recognized. With regard to maintenance, the need
to modularize the system has arisen for larger systems to ease the maintenance task.

Other problems associated with Al software development concern user commitment to the Al
project, system nodificatiois to accomodate multiple expert ideas, the overhead introduced by I.A 0
shells, and standards needed for documentation. The user's financial commitment to an Al software
development effort is highly dependent on the development and demonstration of a prototype. Lack
of a user%' ,,minitnnent to a specification and architecture for systems with embedded Al software
has been Identified as a problem. The need to allow several experts to examine the prototype
oftentimes results in a modified or adapted user-interface, A third problem involves the overhead
introduced by shells in real-time systems. And finally, a discrepancy exists on how to document,
what to include in documents, and whether documentation is even necessary.

3-30

.pp-
%'". %-. %.- -"%-.' "' ",-% %".- ."- " % . ." " . . . .".""., .x .".

owf' ', ,% . " ' ' - ' '.._ - _ - . -. "-"*. ","r" %- .. %,,, 4'- " . 1%,,", .. ..'-,-e , -"- . '""-.. I,-e_.P ".---'z , .. .r " -%,.-'.'£O,-l



3.5.3 A Coniparisoii of A! aud ( InvuialSfw Develolnzitnt P'J)Th~ui

A general concensus an long the res)onses obt Ail,,( frll I h, - l, is t Ihiat prob Ici i, %kere

significantly reduced by the flexibility that rapid i,r, tot% pig ai i(ess reftietent provid "';

Changes to the requirements, a natlural andl cx pv(tc! %%lCralill ilh Al ,,,ft r,,vh,'ivi.
were facilitated through this process

3.5.3 A Comparison of Al aid ( oiiveitoial Software Develol) piit Probhb,nIs

Many similarities and differences can bt fointd in a ( ouparisii (f conventional alnd AI s tfRware

development problems. The followig ectioii atter,pts, to (mpare and (oiltrast s,,ic 4e t' oi st . .

apparent problems. Four maj,,r ;oft %%are categories, based oii a report i"sued by the )epart ent of

Defense (DOD) Joint Ser' ices Task Force on Software Problems, /h port 4,f t/ I ()/) oil

Softwarc Problecms, 17, I)rufeli shall be examin od S,ftare Irf, (', hi',Vl':Iirunij lrht. S,,ft ware,

Product and Po ople.

A I-rief smmniary of problems rinifo(n to b)oth Al and (onventional sftware dhvt kqmlwnt filhIIs

" ineffective communication between the users of tim s mvtem alid ranilag rs, %

" lack of skilled software developmetil managers aid en)ginler.;.

" methodologies are in a state of tranition .

" acquisition of tools is not fully dleinel "- --

• 'p " .

Sdiculty deterfI ini ng amnunt If testing appropriate to each life ci .I

" lack of adequate Quality Assurance engrncecring Iractics ... ,

" software is a labor-intensike technely,)g P

" software i r'iiiveit-dl.

" user s; a isfta t Jim, r%

* lack if well-dl'inv ne let ic,

" shortage of skilled s.stin rnig tleers software enghinivrs andllIItl;l:IrS ;, .-

" robl, ems w ith u.-wcrs w,' , (to ,(mt I,1 , . .;ghl i ili t,' 1.,,( 1! 1, h., I' . .. •'.,i$ '" "

E'ach of these prolwln l lfhch are i]i . sCi in 51111' lli(will t',r: I'' l ,h iI it. ', i -. ft \k r. 0

categories, has a sign iei t niIm aLit hI i t lic software 1,''. elltll Ic r ... - .'%
:, M %

:t :'



3.5.3 A Coniparison of Al and Conventional Software Dev.elopinient Prcdbleffis

3.5.3. 1 Software Life Cyclee

T1he S. ftware Life Cycle refers, to the relationship lhet%%een diifrero'nt phias( of thle s,)ttware def-
velopn ent process from Initial requirements definition i~nd aiialvsIs to .q,41 mi *cpioviiient and%
inaint( lance. The main components of the Life Cyc le categorv are lReqvi irvin-,ut -;, Maniagemnt
Acquisition, P'rodiuct Assurance and Transition. Interestingly, uriany of (tli ;rhit." that surface * v*.

at the requi rements phase, such as cost andl schedule, docuii ;tatioll (70111 til iMcat -wt and chianges
to the software are also characteristic of other life cycle phases, iti particular mnanagemient andP%.%N
acquisition. A brief comparison between conventional and Al life cycle probleis follows.

Aks previousl% indicated, sonie Requirement problems ivlechanges in software, cost. and srhed-
ii e, docu mentat ion, and commnunication. The affect that, requirclineis c liangs hiave onI s'stei ii
development. due to vague, incorrect,, or missing requiremients differs between conventional and Al
software. In conventional software development, requirements are frozen at iome predetermined
point and aiiy changes involve a formal process which may or may not perm't the change. [in fact,
a mninor requiiremnents change could result not only in a large software effort to itillemeiit the new
reqirerrient, hut could also introduce additional expenditures and sch-dazle 4elays. These cost
incurrinents are even more significant when one considers that ofteni,imres requiremuents are defined

according to available time and money. In contrast, Artificial Intelligence systemrs are developed
wvi I lie underlying assumption that requirement change-, will be ncroiedas new infornijation
IS gatrhered fromt prototyping. Al systems generally are dIeveloped in incremental stages of defining
requirenietts, developing a prototype, and redefining new requirements based on the additional
iniforrujation obtained through research or from the prototypek. Therefore, requiremients can be ex-
pected to evolve. Ili fact., at major goal of Al systerris is to encourage and expect the system to W
change..t.~

E'ffect ive commniunicat ion between the users of a system and engineers is another major requirements 0W
problemu. In general, an engineer's comprehension of a usr's treeds is refl(cted Ii the ability to ade-
quiiately document the information. Although conventional and~ Al software are siniilar with respect
to comm'uinication problexns. Al is affected differently by lack of communication. For conventional
software, anl miuerstanding of the product being developed 1, essential to the system's success. In %Y* %
cont rast, the basis for many Al systems, in particular E 'per-L Systems, is an expert-'s knowledge. .6

Tlherefore, thme knowledge engineer has to communicate %veil with the user as well as understand
the explert iWe. .

\fanag-niont of:software encomipasses various aspects of englineering: managing of software, people, r 0
andl skills: availability of tools, metrics and models. A characteristic of both conventional and Al
software developmfent te'ams is the lack of skilled project managers. Al development is particularly ;

affected becauise managers with or without Al development experience have no clear guides on how
to lprcdiice a well-engineered prod uct.%

Ini both co)nventional arid AlI software development, the acqluisition of software amid] tools is not fully0
definied Ouio probhlemi is tiat conventional software developments are not always carefully tracked.
WAith prototN ping, Al systems are always in a state of flux which inakes configuration managemient,~.
(111ll( iilt TI Okl ;L1 11(1 iecessarmix a requi redl deliverable, nior are they laid geted for Iii conuvemtional

Simnilar pro~lemsi~ in l'roduct Assurance call be found iii conventional and Al software development.0
Il)iffirnit, ;t rise, iii det ermnining thle amount of testing appropriate to each life cycle phase and

3 32 1

0

%~~~. .% %



* " . . J

"%3.5.3 A Comparison of AI and C.onventionjal Soft warv Develoiniijew 1i'lellij .s \

defining an adequate means to test requirements. Howe'er, unlike Al systen is. conventio,,al softwarc j'

can generally be tested except where requirements are vague or incomplete Iit contrast. ,ftcII iIS-

no definite method to check whether Al reqirenent conditions are met, exists

Presently, conventional and Al Software Methodologies are in a state of transition,. (.uiiveiitiial
software is concerned with upholding standards and conventions for requirements, design alld cod-
ing, while Al is in a state of defining a methodology.

Overall, many common problems which deal with communication, requirentents imodificatIots, ,

tools, and software development are characteristic of both conventional and Al software, ()n the ,-.
other hand, each of the problem categories vary based on the software application. Where cotomno-
nication with a user is vital to conventional software's success because requirements are frozen at
some point, Al software works around the communication problem by developing a prototype which

serves to further understand and properly implement the requirements. As a linatl example, test
methods and approaches have always been a debatable subject in conventional software Likewise,
Al software suffers from the same problem. However, Al differs in that unlike conventionail softwarc
where sf,,me adequate test method is usually available, a means to efliciently test Al softwar, doe,
not necessarily exist.

3.5.3.2 Environment

Environment encompasses tools and methodologies involved in the developierit and suplprt of P V ?

computer software. The five main categories described are: Disciplined Methods, Labor-iterisi,,. -
Tools, Reinvention and Capital Investment. N

A characteristic problem of conventional and Al software is the lack of adequate qualit v assIrat .a It(

engineering practices. Conventional software suffers from the need for improved discipli(ed met h105 .P
to measure software quality particularly when requirements are not well-defined. Al software differs -
in that software quality tends to be difficult to test or measure at all. In fact, no true scale availahne .
can determine how high a rating an Al system can achieve. .

Another environmental problem, the labor-intensiveness of software technology, is apparent ii
conventional and Al software. A need to automate manual processes with an ultimate g, al f "*.-'

lninilizing manual processes has been recogtized. A recommended imeans of significait 1 , ,t-i;1

ai Al mmual process is to automate the process of acquisition, organization and strut1it ,g .4 4

knowledge. ?..
....... . ,.r .. ,,'

Ieinvention, a problem in conventional software, refers to the i nabilit.y tc reuse fuitict u )wdl .i H 11;,r

software developed for other systems resulting in higher development costs. Al si ,ftwar. Imilt ii:
incremental stages which introduce small extensions, relies on the concept, of r-ilsabi ,di witic 0
within a system. However, reusable software between functionally similar systcms is qic-t ioiathl %

Suflicient, capital investment in conventio,ial and Al software coild( slgnili,'antly reduie c , cir ,- ?.--

merit problents such as reinvention and la k of or inadequate methohologics and t(,,ik .f) rc .".---"

re'cognitiont of the Importance of capital invest ment to improve suihi)onrt env iron ii ents and~ 1111i5

reduce problematic areas exists for conventional software. Al software qllffers from a gc'ncral lick

of funding for Al system development.

3 33 *.-.

%
"p. ~p ~% -: %.- .'9*%.". ~****** ** -. % N"



V Rb ,-= - ., .= ,..- , ., : .. ,. .R..., , ,;7 % .. - - : , :; '*J ,, , '-

3.5.3 A (onilmrison of Al and Conventional Soft ware Develolunient Proble.liN

3.5.3.3 Software Product

Software Product deals with the operational embedded computer software and tle materials nec- p

essary for life cycle support such as: requirement and design specifications, source code, test data,

system generation data, unique support tools, etc. This section compares at(, contrasts niiajor

problems between conventional and Al software for the following categories: Doe.n't Meet the

Need; Software Metrics; and Design Attributes. Presently, no common problems between two

other categories, Documentation and Immutable Software, have surfaced.

A problem with software occurs when the system does not meet user needs. Conventional and Al

software deperd on user satisfaction for a system's successful deployment, Ilowever, each diler

in the manner in which users must be satisfied. Vague or incorrect requirements in 'oiventional
software seriously affect the final product. Oftentimes, eirors in requirements result in an inade-

quate system which does not meet with user specifications. An interesting contract is A[ software, lop
which developed incrementally, encourages and enforces regular meetings wi-,h the user to discuss

and update system requirements. Therefore, requirement errors are not a serious hindrance to
the sytem's deployment. However, Al software appears to confront a problem with the user's
initial definition of the system. Frequently, a user's coricept of the capabilities of an Al system
exceed present day system development possibilities. Conventional and Al software do have one
common user satisfaction problem. Both lack effective methods to determine the system's quality

and therefore do not have a means to estimate or predict a user's level of satisfaction with the final
product.
Software met rics attempt to provide analytic models and empirical data on software to help with the %; -

se.lectin of software engineering techniques, to estimate development resources and evaluate future w" I

costs \ problem with conventional and, in particular, A l software is the lack of well-defined metrics.
Poorlv defined metrics result from the fact that various approaches to conventional software exist .
and In specilic Al methodologv is available. Given the variety (or lack) of standard engineering
met hodologies, standard metrics are difficult to define.

System design should provide an acceptable programming solution to problems identified in the re-
(Jiirenifnts document. Some of the major problems in conventional software design are inadequately
(esigned re(liirements, incorrect assumiptions made by the engineer, and ambiguous requirements. \. ,

In each of the situations, the system's ability to be modified becomes crucial. Some of the reasons
f,,r poorly designed software can be attributed to lack of a design methodology with a top-down

hierarclhial breakdown of the system and lack of consideration for human engineering in the design "' " "

of the systetu. The result can be a system that is not necessarily capable of handling changes easily
and with minimal cost expenditures and/or schedule delays. The final product essentially will not
meet % ith user requirements.

Unlike conventional software, no formal methodology exists by which Al systems can be developed.
No clear guidelines on how to efficiently produce a well-engineered commercial product through " .

r;i,id ,,ro)tvtping is available. Nonetheless, many of the decided problems in conventional software

d"'ig, whicih canino' casi lv handle requirement modifications for poorly designed systems, do not.

appear (or are remvetied) in Al sy-tens. As a result of the cyclic nature of Al systems, where

s,,ft% am' is (,cNIed rcpeatedlkY from requirenients to design to redefinition of requirements, incorrect.

Vster ip -i at ionn are ii, rit),rate(l and updated continuously. In fact, perhaps the main problem-%
.'. -.5"

3 34 .

o* .' % '.? P 4.A V .~ .~ S



3.5.3 A Comparison of AI and Conventional Software Develoinent, Prohlenis 0

with the design of Al systems, when considering user needs, is in defining the ki, hedgu baw iti % --

optimal problem solving techniques. ".

3.5.3.4 People

In conventional and Al software development, two problematic areas have arisen a a result of a

shortage of skilled system engineers, software engineers and managers: the uiniber and availability

of skilled professionals. Engineers with knowledge in various computer-related livids as well as
experts who can successfully lead software projects are needed for conventional anl Al softwkre ,

development efforts. As a relatively young field, Al cannot provide a sufficient unibvr of vxlperi-
enced managers and engineers. Strong management does not exist t.o guide an Al 1)roj-(t I hrogh '"
completion and there are not enough engineers with Al software development exI)1rI1'l' ".

Another conventional and Al software probleti is a user's skill and availability to eflet vl (0,1-

municate a sysLem's requirements. Al, in particular, is hurt by users who trim knO% Idg. to, fit II l(e"

knowledge structure; who are not able to express their knowledge; and who do not hav ugh . .

time to devote to the project.

%

*°%

'P..

:3 3F

%' % % % No % % %- % % % %",' ,,-. .- , .% -,- . - ,• .- °.- . _% % % % "%"% .- % % /

' - - ,"%,%. ",P. ... ,% - " " " , % %

%..%.%



- - 5 . 8 h S * - - - * * .. - * a

SECTION 4

Case Study Results

4.1 Case Study Data */'.

Tabular data pertaining to the case study evaluations are presented in this seCliol for the folloWiig

participants:

1. ARING Research Corporation;

2. Boeing Computer Services;

3. Boeing Military Airplane Company;

4. Brattle Research Corporation;

5. Carnegie Group, Inc.;%

6. Digital Equipment Corporation; 4

7. Expert Technologies, Inc.; .

8. Frey Associates, Inc.;

9. GTE Data Services;

10. IBM Federal Systems Group;

11. Inference Corporation (2 cases);

12. Lockheed Aircraft Service Company (2 cases); ... .

13. Lock lice(-Ceorgia Company;

14. Thel MITlRE Corporation (Bedford, Ma.);

15. 'rhe MIT'RE Corporation (McLean, Va.);

16. Northrop Avionics Division;

17. PAR Government Systems Corporation (3 cases);

18.~~~~a Saner A.4.ae, 1

%. %

4 14

e4..
,....s*.~ ~ ~ %. , ~*',

I~~~~~~~~~~~~~~~~~~~ %.Siiiiegrui ~~ac1~itrtir oreoivj "Or,



W*-w U-

4.1 Case SRtudy Data

21. Texas Instruments, Inc. %
-6

The tables present a common set of features with individual applications for each iparticipant. TheN
manner in which the data is codified facilitated the analytical process of ferreting out coollIllohll%
characteristics, general trends and distinguishing traits. Specific observations relating to such as-
pects are presented in Section 4.2.

Prior to evaluating the tabular data,the reader is encouraged to compare the (';%,e14 in a qualil.iii.ive
manner since:

Many systems are in different phases of development. Consequently, the responses for a
system in an early stage of development may change as the system matures. For example, a
system that is in the phase of demonstrating technology may have had little user involvement.
tlowever, once the system has demonstrated feasibility of the technology, users are apt to , *'*become more involved. .

" Many of the systems relate to different domains and applications. The features pertaining to "A
the development of a tool many be justifiably distinct from the features relating to a complete ,,

stand-alone system. %

" The concise responses required by a tabular presentation of the data may, in some cases, be
misleading. To obtain a better understanding of the systems studied, the reader is encouraged 4A

to rev iew the case study summaries delineated in Appendix C.

0

4-2;

%0%~~ %

'IU'

.d'..'p

" ./'%,

'% . ,J*0*:°%

4'% ,,,,*€

U U , .'. ' . . . .' 'U0. .* -.- -.- . . .- ",-.. . - ,,, -.-. .o.,., -, .- 0-,-,., . U- , ' Z-. ,, -.,..,.,'-' ' , ""' . ,. . .. ~. . , .', -,* 'v ,.- . . ... ,.., ,- • '. a € . €. " U- ' " " - " ." *' 'U "% '". ""' ',' . , ."" J. d

.0.,0...'[..,_1[%, U..'t -('* ' '' '' " " '' ''n " .. Ii



-Xj -Q - -. rp li . -17 - - - - --

% %'

4.1 ('ase Stwidy Data

TPable 4.1i--i1 ARINC Research Corporation -Systemi Testability aiid Mauieiinaie P~rogramii

(STAMP')

FEATU RE APLICA rrON

Problem Category Generic tool.

Domain Electronic warfare testabilits

Current System Phase Field support "

Type of Funding Internal Research &' Dcvelopmieit,

Experienced Al Staff 2r

Size of Development 'Team 4-8"..a

Level of User Involvement Veyactive

lDornain Expert Role Not applicable

Forimal I)evelopment Procedures Yes, ititertial statndards*

Typ~eof Knowledge Representation Rules and facts

Inference Mech~anism Information theory and dependenicy aialysis algorit.1Imw \

Requirements Analysis Yes, for thme rehosted version

Approval Mechanisms Bioth managerial and~ teclimiical rev iv%

Iterative Developmnut Process Yes, 5 major architectural chaiiges

Design ChangesYe

Prototypes Bitilt Yes -

D~evelopment 'rime: Initial Prototype 6 months

Development Time: End Product 2 years field model

Documentation Yes, extensive%.

comliguuratiou Managemenit Not, after iniitial rehosted sysi cli

~.,'iviu i~iilSN liii erlat 41 S'l:NI II is writtIeni inl conveflt ional ;41%%a~re ffri ran 771 ---

111,101- U sed: lleqjuiremitls Analysis No

Tlools Usqed: I)evelopinneil. Folrtran 77 comnpiler/dehiiigger, and1 I I P- 10 t )O j I iiig -;S (-I '-.-

Tlools used: 'L'etilig No

Formal TIest Procedtires 'Testing: module, integrationt test ig 2 moin iti sur trial 1wriodn

'Testing Criteria Not. ap~pl icab le

Test l)ata Actual ilsag('e-a%

Self Modifying ("ode No

4______________________ 
0

-e ". a . *aa *.' .a P ? . . a.. e -ft .P

?- %. J. %- .0 % j- % *~ a- e a-r %. r- %, P~ './-'/ %- r-% %- e" % %

Na,.



4.1 Case Study Data . -

'fable 4.1-2 Boeing Computer Services - Strategic Force Management 1)ecisio Aid

FEATURE APPLICATION
Problem Category Replanning decision aid

Domain Employment of strategic forces

Current System Phase Development

% Type of Funding Internal

Experienced Al Staff Yes

Size of Development Team I

Level of User Involvement High
Domain Expert Role Knowledge acquisition

Formal Development Procedures No

Type of Knowledge Representation Frames, logic & rule based

Inference Mechanism KEE supplied

Requirements Analysis Yes

Approval Mechanisms None

Iterative Development Process Yes

Design Changes Yes

Prototypes Built Yes

Development Time: Initial Prototype 6 Man-months

Development Time: End Product System not fielded

Documentation Some - informal

Configuration Management None

Conventional SW Interface None

* Tools Used: Requirements Analysis None

Tools Used: Development KEE, TI Explorer

Tools Used: Testing None

Formal Test Procedures None

Testing Criteria Expert acceptance of plan

Test Data Test scenarios

Self Modifying Code No
%

4-4 ii

.. .".* d
s

% • . -' . . .-. - ' %. '. . -



4.1 Case Shidy Data

Table 4.1-3 : Boeing Military Airplane Company - Automnatic Targct lRecogn'aioil (A'If IPrograaa

FEATURE APPlLICAIlON
Problem Category Interpretation - image understadiag

Domain TIarget recoguitiola

Current System Phase Feasibility demaoiistrat aula

Type of Funding Internal Research & Developmtenat

E~xperienced Al Staff Yes

Size of Development Teama Proprietary

Level of User Involvement Influenced] & directed developmient effort q

D~omain Expert Role Minimaal expert, C0oaasult~atjiOaa

Formal Development Procedures yes- 0

Type of Knowledge Representation Frame-based with rult-s

Inference Mechanism Forward chlaiiig

Requirements Analysis Yes

Approval Mechanisms Continuous internal review process

Iterative Development Process Yes

Design Changes Yes, minor rule changes and miajor iiser inaerhae m~odificat 10l111

Prototypes Built Yes

Development Time: Initial Prototype Proprietary

Development Time: End Produtct P'roprietary

Docitmentationi Mostly informial excep)t for ammtal repoa rt oii sho if r('-(-drcl

Configutration Management E~ntity checkpointing wnd lilt, backuap ..

Conventional SW Interface Knowledge Craft stipports dirt-ct calls to 1.1.;j (ode

Tools1 U sed: lequiireminets Aiialysis No

TIools Used: D~evelopment Knowledge Craft, on Symibol ics pr' uess rs

Tools Used: Testing No

Formal Test Procedures No

Testing Criteria Results verified by tiser awd coaso-isteut WithI r(.i'mIr lavth?

T1est D~ata TFest ima~ge injauits - also igredl (vr ar)id(-I df..%

Self Modifying C"Ode Not at tis 1 l11aV

4 5 N. N

% ~~~~5 -if %5 .% f .e



-W - - .. ... . . . "

- J*

4.1 Case Study Data

Table 4.1 -4 : Brattle Research Corporation - Text Interpretation System

FEATURE APPLICATION

Problem Category Text interpretatio,.

Domain Business informtt.i i

Current System Phase I)evelopilwlt"

Type of Funding Venture and contract,.

Experienced Al Staff Yes - all memlbers,

Size of Development Team 12 overall

Level of User Involvement Slight - more later

Domain Expert Role Not applicable

Formal Development Procedures Yes, internal

Type of Knowledge Representation Proprietary (frame-like) 5

Inference Mechanism Inheritance & deduction

Requirements Analysis Yes .,.-

Approval Mechanisms Yes - both management & technical

Iterative Development Process Yes
Design Changes Yes

Prototypes Built Yes

el)velopment Time: Initial Prototype 1 year .-

)evelopment Time: End Product 2 years (estimate)

Documentation Yes - formal specs & design documents

Configuration Management Yes

Conventional SW Interface Yes - in development

Tools Used: Requirements Analysis Prototyping

Tools Used: Development Symbolics environment

Tools Used: Testing Yes - built own tools

Formal Test Procedures Blind & regression

Testing Criteria Absolute accuracy
,.5.,.,

'Test Data Text articles

Self Modifying Code No %

*, 5, +.

4-6

% .5 % %- %55-

%7 % .+
,, . ..%. . ". -

,%,' . " % .," ,+,, -." -. -.- -" --+. - .,- ,,.- ,,. -. .s- ,,.-.,. -."-."*,. % "-,," -" -." ,." ." ,.".."-." .j ," .,," -. "," ." -,." ." " %''-. '.',.'." . . - '- .-.','.,.''.+. .'," '5-"



- - - a a D ~ - . - -

4.1 Caso Study Data

Table 4.1-5 Carnegie G~roup, Inc. -DISPATCHIER Project

FEATURE APPLICATION

Problem Category Monitor and control

Domain Factory automated materials handling

Current System Phase Completed - production model

Type of funding Commercial contract

Experienced Al Staff 2

Size of Development Team 3

Level of User Involvement Present but passive

Domain Expert Role No experts in this domain

Formal Development Procedures No

Type of Knowledge Representation Production rules

Inference Mechanism Forward chaining a-.

Requirements Analysis No

Approval Mechanisms Informal

Iterative Development Process Yes IV V.

Design Changes Yes, to accomodate customer requests a

Prototypes Built Some critical modules

Development Time: Initial Prototype 7 months

Development Time: End Product 6 months ~/.-

Documentation Specification and informal ineiiios

Configuration Management No a

Conventional SW hiterface Use of miailboxeg for C' anid 11LASS

TIol~ 4 -4sed: lHequ~iem~eits Anaiid.u None

T~ook 11Ad: D evelopml~ent Code geinerator for dat abase rot t It

TI~ok U sed: Tvesting iiI :r

F'ormial l'e-41 I'rocedtires None

TVesting Criteria None

Test D~ata~ Simnulat or

Self Modifying Code No)
%

V

4-7

a. ~ ~ ~ ~ N %, %-~a *~d



41Case Shiudy Data

I I ; i gita Fd qimpilt-11. ( OrPoradtii \5I'] WO~ N S%.Aii i

FEATU'LRE APP'lLIC AIO N

*Experienced Al Staff Yes -trained internially

Size of Development Team 35
*Level of User Involvement Heavy

Domain Expert Role Multiple experts - various roles
Formal D~evelopment Procedures Yes .'

'Ivpe of Knowledge Representation RulesNO

Inference Mechanism Forward chaining (OPS5 interpreter)
Ieqiremnents Analysis Yes - problem definitioni
Approval Mechanisms Informal - management team concept

0VIi eral ive D~evelopment Process Yes
D~esign Changes Yes

Prototypes Built For major mods only
* Development Time: Initial Prototype 5 months

Development Time: End Product 12-18 mo. for 1st installation/quarterly upgrades now .

D~ocumentation Architectural level, comments in code
Configuration Management Yes

Conventional SW Interface Yes

Tooks Used: Requirements Analysis No%

Tlools Used: D~evelopment VAXII/VMS, 0PS5, DBMS +some "home-grown"
Tools Used: Testing Yes, for code & unit test phase

F'ornial Trest P'roceduires Regression testing/Problem reporting system
Testing Criteria Qualitative only

T'est D~at~a Customer orders- real and hypothesized
Sclf F \~lifi'ing (ode No

4 8

N 1%' % r. .i. -Ir % %.1: r%.-. .. .~ . **. %* %%



4.1 Case Study Data%

* SJ

Table 4.1-7: Expert Technologies Inc. -PEGASYS

FEATURE APPLICATION
Problem Category Automatic pagination

Domain Yellow Page directories

Current System Phase Delivered %

Type of Funding Internal .5.-

Experienced Al Staff Yes - 3

Size of Development Team8

Level of User Involvement High

Domain Expert Role Knowledge acquisition

Formal Development Procedures

Type of Knowledge Representation Semantic network of rraiuies

Inference Mechanism Heuristic search mechanism

Requirements Analysis Yes

Approval Mechanisms Yes, at project manager/senior engineer level

Iterative Development Process YesW

Design Changes Yes

Prototypes Built Yes

Development Time: Initial Prototype 7 man-months

Development Time: End Product 69 man-months

Documentation Yes

Configuration Management Yes - proprietary

Conventional SW Interface Yes

'lools4 1I-med: li'qirenueits Analysiis hEKnow ledge Craft , ''l lExpimers

Trools Usqed: D~evelopment Yes, at first ~5

'roots Use& Testing None *'%

Formal Test Procedures Yes

Testing Criteria Acceptance Test Plan (ArtP)

4-9

J. P F J
5%P *.0



4.1 ('ase Study Data

Table 4.1-8: Frey Associates, Inc. - TIIEMIS Managemezit Information System-

F EATU RE APPLICATION

Problem Category Natural language processing

Domain Database query

Current System Phase Completed - commercial system %.%

Type of Funding Internal

Experienced AI Staff Yes, 1 out of 12 '

Size of Development Team 6-12

Level of User Involvement Medium-heavy

Domain Expert Role Not applicable

Formal Development Procedures No

Type of Knowledge Representation Rule-based

Inference Mechanism Forward chaining ,%

Requirements Analysis Yes

Approval Mechanisms Informal

Iterative Development Process Yes

Design Changes Throughout system development

Prototypes Built Yes

Devel,,pment Time: Initial Prototype 6 months (I man year)

Development Time: End Product 10 man years for final product

Documentation Yes - extensive (user's manuals etc.)

Configuration Management Yes, source code and version control.

Conventional SW Interface Yes (Fortran and user interface)

"Toolk Used: Requirements Analysis None

"Tools Used: Development InterLISP

Tools Used: Testing None

Formal Test Procedures Yes, built-in test, regression, auto. error logging

Testing Criteria Internal testers and user agreement with conclusions

Test Data User defined or hypothetical queries (correct and incorrect)

Self Modifying Code Yes

4-10



%

4.1 Caise Stiidy Data,

'fable 4.1- 9 :GTE Data Services -Central Ollice Maintenance P~rintouat Analysis and SlIggest
System (COMPASS)

FEATURE A1I'll LICA'l'IO N
Problem Category Fault lDiagniosis

Domain Telecomuucation switch hardware
Current System Phase Limited field study 5.

Type of Funding internal

Experienced Al Staff2

Size of Development Tleamn 2 - 7

Level of User Involvement Small - Domain Expert was supervisor of ('1(- Users

D~omain Expert Role I week per month met with knowledge enigineer-%

Formal Development P~rocedures Yes

Type of Knowledge Representation Frames and production rules rV

Inference Mechanism KEE supplied

Requirements Analysis No
Approval Mechanisms Informal - supewrv isory level

Iterative Development Process Only during early phnLses;

l)es.ign Changes Somie S.

Prototypes BuiltTw

Development Time: Initial Prototype 1(X mati-months

Development Time: End Product 106 ritan-miths

Documentation Technical notes and Kn~owledge Acquisition V~ides documtits *\%

Configuration Management Implemented a software control knowledge hase

(Ionventional SW Interface N one

TIools Used: Requirements Analysis None

'l'olq U sed: lDevelnnent lL

To~ols Used: Testing [list) procedure to do te-iting in) batcli il

Forimal Test lrocetires No

1'esl.;ng Crit~eria ~ Independent experlos evaltiat n ( f (' II'ASrw-~ mil (II pli

'Femt Data Hardware error toessage lile-

self Modifyin~g (Code Nni

N,~~~~~d %d % ,%% %I % %
% % % % % %

.1* %~S *% .1* % % ** %. %



4.1 Case Study Data

Table 4.1-10 :IBM Federal Systems Group - Fault Diagnosis and Resolution System~ (FI)S

FEATURE APPLICAvTION-- __- _*-

Problem Category Fault diagnosis

Domain Satellite ground-based maintenance

Current System Phase Installation & test

Type of Funding Independent research and development

Experienced Al Staff Yes, 1

Size of Development Team 4

Level of User Involvement None

Domain Expert Role None

Formal Development Procedures Yes

Type of Knowledge Representation Production rules

Inference Mechanism Forward and backward chaining

Requirements Analysis No

Approval Mechanisms Standard research approval process

Iterative Development Process Yes0

Design Changes Yes

Prototypes Built Yes

Development Time: Initial Prototype 6 Man-mnonths

Development Time: End Product 20 Man-months

Documentation Yes

Configuration Management Informal

Conventional SW Interface Yes
%Tools Used: Requirements Analysis None 

- ~~
Tools Used: Development Commercial & in-house shell :

'Tools Used: Testing None

* I I ii D)~ vmuii enluatlion oI i ile hases%

* 'les( j );j,a Sinmdation

Self Modifyig Code No

4-12

- %



4.1 Case Study Data

'U.0

Table 4.1--li Inference Corp. -Authorizer's Assistant

__ __ __ __ __ __ __ __ __ __ _ __ __ __ __ __ __ __ __ __ Nt

Problem Category Intelligent assistant

Domain Charge authorizations

Current System Phase Delivered system

Type of Funding Contract

Experienced Al Staff Yes

Size of Development Team 8
Level of User Involvement High

Domain Expert Role Included in entire development procesN

Formal Development Procedures Yes

Type of Knowledge Representation Production rules 0
Inference Mechanism Forward chaining%

Requirements Analysis Yes

Approval Mechanisms Yes

Iterative Development Process Yes .t
Design Changes Yes

Prototypes Built Yes

Development Time: Initial Prototype 15 Man-months

Development Time: End Product 87 Man-mnonths

Documentation Yes

Configuration Management None

aConventional SW Interface Yes

11- t se4.1: l i ei i e ll 'ts 1%1 ,a h 4 sso

T'ooks Used: D~evelopmient Anl andl Symibolics developmenit t ilitit-

Se()l4 Modiyin Cdeftn Nnhue I)-htet e fcl
Formal~~~~d Tet ~oetrsN

-1 13 .

% % 0
% % 1*~

% %* % %**r



4.1 Case tudy Data
%

Z"
-%%"e

Table .1. I- 12 Inference Corp. - Medical Charge Evaluiation Control (Medchc) _,

FEATURE APPLICATION ,

Problem Category Fraud Detection

Domain Medical Insurance ( CIhih.e,

Current System Phase Development

Type of Funding (ontract

Experienced Al Staff ":- ''.

Size of Development Team -

Level of User Involvement High, they were the experts ,

Domain Expert Role Defined requirements of system

Formal Development Procedures Yes

Type of Knowledge Representation Frames and production rules

Inference Mechanism Forward & backward chaining

Requirements Analysis Yes

Approval Mechanisms None

Iterative Development Process Yes

Design Changes Yes, mostly low level ones

Prototypes Built Yes -"

)evelopment Time: Initial Prototype 6 man-months ''"

Development Time: End Product 12 man-months Z1.

(7 calendar months) -

Documentation Some %

Configuration Management None

Conventional SW Interface Yes

Tools Used: Requirements Analysis None r --

Tools Used: Development ART, Symbolics .

Tools Used: Testing None
%%

Formal Test Procedures None •

Testing Criteria No formal process -
"

Test Data Live data

Sel(f Modifying Cohe No

4-14 -
,#" " t ,* * V €" " d" - ,p -• ..



% 01 %V

4.1 Case Stud), Data

Table 4.1-13 Lockheed Aircraft Service Company - E~xpert Software P~ricer (IESl1)

FEATURE APPLICATION .*.

Problem Category Software costing

Domain Sizing of software

Current System Phase Complete

Type of Funding Internal N
Experienced Al Staff No

Size of Development Team 2

Level of User Involvement Moderate N

Domain Expert Role No expert used

Formal Development Procedures Yes, internal

Type of Knowledge Representation Frame based

Inference Mechanism Backward chaining provided by LES

Requirements Analysis Yes

Approval Mechanisms Yes
Iterative Development Process Yes

Design Changes Yes %%

Prototypes Built Yes%

Development 'rime: Initial Prototype 4 man-inonths

Development Time: End Product 12 man-months
Documentation Software Requirements SpecificatiOnl

Configuration Management Yes

Conventional SW lilterfau' Ye

'roots U sedi: levelopmint LES and cotiveittional compilers

1,641 1(4 le: TIcA4 lig Nonie

Formial TVest. Prot ('(lires Notie

Tlesting (Iriteria '-80%O of actual size and costs

'Test D~ata Existing systems with known size and costs .*~

Self Modifying Code No -

4 15

*. % %* . % . ~~ % .~' . .~ . U



4.1 Cae.Stuty Dat
W~

i'.

'I able 4t. 1- 14 Lockheed Aircraft Service Company - Frequency Hopper Signal Identifier

FEATURE AP PLIC ATION
Problemn Category Detection &characterization of frequency hopped signals

Domain Signal identification

Current Systemi Phase Completed prototype -

.5 TIype of Funding Internal

Exp~erienced Al Staff Yes

Size of D~evelopment Team 1

Level of User Involvenment High

IDontain Expert. Role Small - knowledge acquisition

R rmal D~evelopmient Procedtires No

Type of Knowledge Representation Temporal framework

Inference Mechanism Temporal logic and pattern matching

Requ'irements Analysis Yes

Approval Mechanisms No

iterative Development Process Yes 0.

Design Changes Yes

Prototypes Built. Yes%

Developiiew iiiei Initial Prototype 9 mionths

Development Tinme: End Product System not fielded .

lDoctimeutatioll Yes

("on figuiiration Management No * 5

Conventional SW Interface No

T ook Used Requirements Analysis None

.5Tools 1Used: D)evelopment LISP
.5%

T ools Used: Testing None

-Formial Test Procedures No

Tlest ing C"riteria Consistency and improved performance

* lest D~ata Surnulatiouitrlp%

Self Mlodifying Code No U

.52.

WO e ~ d,

% %'
4" W %
% % % %% % %

~ .f .'~ f 5~ ' '**N-- 5



4.1 Case Study Data

Trable 4.1 -15 :Lock heed-Ucorg ia C'omipany - lIdt's A,"swhatv

FEATURE APPLICATION
Problem Category Intelligent assistant

Domain Combat avionics

Current System Phase Analysis 'J

Type of Funding Contract (US Air Force)

Experienced Al Staff Yes 65% of the development teami

Size of Development Team Over 40

Level of User Involvement Heavy

Domain Expert Role Several experts involved iii knowledge acquisition

Formal Development Procedures Yes
k,

Type of Knowledge Representation Varied

Inference Mechanism Varied

Requirements Analysis Yes%

Approval Mechanisms Informal and some formal reviews scheduled A..

Iterative Development Process Yes

Design Changes Yes

Prototypes Built Yes

Development Time: Initial Prototype 2 years (estimate)

Development Time: End Product Not completed

Documentation Yes .

Configuration Management Yes - CMS

Conventional SW Interface Undetermined

'Poolq 11-I(d: Hlqitireiiaeiitts A nalysis None

TFools Used: Developmnent ARTm LES, OPS5

Tools Used: Testing Nonec so far

Formial Test ProcedumresYe

EXpents .'vallialioll r ~ ( if e wfr amc ,.

8i'i~i~irmvcotl' . s p m%

I%

st-If 14141 111F ode -



%

4.1 Case Study Data

TFable .4.1 16 MIITR E Inc. (Bledford) - Litluid Ox(ygen Eljwrt. Sysletul

FEATURE APPLIICATION

Problem Category Fault, dtct'tot/diagnomis

Dontaiii Space technology-

Cuirrent System Phase Final prototypeW comletel

Type of funding Contract (NASA)

Experienced Al Staff Yes .~'

Size of lDevelopmnent TIeami 2

Level of User Involvement Heavy%

D~omain Expert Role Active in system dlevelopment

Formal Development Procedures No

Type of Knowledge Representation Frames

Inference Mechanism Frame-based ,A1

Requirements Analysis Yes %A

Approval Mechanismns Informal - domain expert0

Iterative Development Process Yes

D~esign Changes Major throughout system development 64- %%

P'rototypes Built. Yes

IDe'.loprnent Timie: Initial Prototype 6 months

Development Time: End Product 2 years
Documentation Nothing formal

Configuration Management No, did tape backups

Conventional SW Interface Yes

Toois Used: leqirements Analysis No -

l'oouI Tsed: Development Yes, Symnbolics Zetalisp environment

Tools Used: Testing No %
., %J^Furiiml Test Procedures No

Testinug ('riterM ~ User agreement with conclusions

'Ie.st Data Live sensor data

S'lf Modifying Code No

4- 18 1PA.

AW % d AA A %
A. .6,%, A % % % %

% A A e - , * 0 v %



S~~~~j -r 'j -. Pm----- -

4.1 Case Study Data

Table 4.1-17: MITRE Inc. (McLean) - ANALYSTOMIW

FEATURE APPLICATION
Problem Category Interpretation /assessment

Domain Battle management

Current System Phase Completed - production mtodel

Type of funding Sponsored research with follow on contract

Experienced Al Staff' 3-4

Size of Development Team 5

Level of User Involvement Domain expert, review and test

Domain Expert Role Active in development and transition to field

Formal Development Procedures No, used rapid prototyping "a.*

Type of Knowledge Representation Frames and rules

Inference Mechanism Frame-based and goal directed

Requirements Analysis Matching of probleitis to Al feattures *'

Approval Mechanisms Informal; domain expert and prograi nanagcr

Iterative Development Process Yes, adding knowledge .

Design Changes At least one major change ~ :-
Prototypes Built One

Development Time: Initial Prototype 8 months

Development Time: Eiid Product 18 months

Documentation Listings, nothing formial
Configuration Management Prior to release: build level

Conventional SW Interface No

'fools Used: Requirements Analysis None

Tools Used: Development Micro-compiler for Lisp Miachine/ built others

'foolds UIsedl: 'l'sti ig No

Focrmauzl 'l'm',. I'rcc'lures Nc,

'IVIJt1 Critel III Doumain ex~pert ;ind tuser SIt isfact ion

TVest Datad Sitmilat ed (data st ream

self Ni'ulify'ing Code No

4-19

% V0



4.1 Case Study Data

'Fable 4.1 1S: Northrop, Aircraft Divis;ion - Exp~ert Svstein frr Ttrgt At tack seqietitkai (ESTlAS)

FEAT1. 11 A PPH[C AT I)N
Problem Category D~ecision aids

D~omai n Combat avionics

Current System Phase Completed feasibility prototype%

Tyvpe of Funding Interniial

Experienced Al Staff Yes

Size of Development Teami 4

Level of User Involvement Active, throughout developmen~t and testing

Domain Expert Role Very active for knowledge acquiisition and testing

Forinal D~evelopment Procedures Yes, conventional framework

TIype of Knowledge Representation Production rules

Inference Mechanism Forward & backward chaining

Requirements Analysis Yes

Approval Mechanisms Yes, frequent reviews and several demos 0

Iterative Development Process Yes

Design Changes Yes

Prototypes Built YesIN

Development Time: initial Prototype 6 months

D Ievelopment Time: End Product Not applicable

Docuimentation Yes, enforced

Configliration Management Yes%

Conventional SW Interface Not at this time

Tools Used: Reqirements Analysis None

Tools Used: Development. LISP workstations using Common Lisp

Tools Used: Testing Yes, built-in trace facilities

Forinal Test Procedures No *

* Testinig Criteria User satisfaction /expert L9sessment

T'est D~at~a Usage

Self klodfN ig Code No%

4-20

% % % % %-

%~ %



4.1 CaseF~ Stiuly Data %.. ~

Z Z..Z.

Tabl 4.119 ai onmnSytsCoorin Cost leneit of tactical irions~

Current System Phase Completed prototype

Type of Funding Contract

Experienced Al Staff Yes o

Size of Development Team 3-6 computer scientists & in-house expert (R)

Level of User Involvement Moderate

D~omain Expert Role lDefine the problem, Kniowledge engineering a;im te-si ipr4ltotlp

Formal Development Procedures Yes

Type of Knowledge Representation Inference network of productionridues with (IIideneI IFtors

Inference Mechanism aldrcd

Requirements Analysis Yes

Approval Mechanisms Informal - fprojert st afF

Iterative Development Process Yes

Design Changes Yes

Prototypes Built Yes

Development Time: Initial Prototype 24 man-mionthis (including prelimiinary iiive.t igat iou phase)

Development Time: Eiid Product Systemn not fielded

Documentation Yes, extensive

Configntration Management v

Tiook I tsei: IDeuvelopmuent. Inimoulse develolwll Expert System ui ch adI graphics t ook ~

Tooks U sed: Testing No

Formal Test Procedtires Yes

T'esting Criteria E~xperts and poi-entiad liser, ratliwgs of >'tm.-.,-

Test Data Scenario S"-

IN%
Self Modifying Code N

V..



-~~~ ~~~~~ -***.F** . I -. *~d

4.1 (Cast, Study Data

TFable 1, I 20 :P1A 11 Governmient Systems Corporation D luplex Armry Rla(io/Radar Targeting
I ecNI.j'm /\1d (DIARTn)

F EA'IARE APuLicArION
Problem Category Decision Aid

Domain Target ideritificatinn/classification

(:irrent System Phase Completed prototype

T1ype of Futnding Contract

E'perienccd Al Staff Yes

4z lf evelopmrent Teamn 3-fl computer scientists k in-house expert(s)

I cvel 4 1I ser Inv ~lveivieWi. NI hi ate

D omini~t iExperI Hole D~efine the prolilent, knowledge engineering anid test prototype

limnaIiel IDf 'Io0j11P11et Procedures Yes

TIWP of K~nowledge Representation Inference network of production rules with confidence factors

Inference Mechanism Goal-directed

Requirements Analysis Yes0

Approval Mechanisms Informal - project staff

It erative D~evelopmient Process Yes

D~esign Changes Yes

Prototypes Built Yes

D~evelopmnent Time: Initial Prototype 36 man-months (including preliminary investigation phase)-P

l)e vfvioprient nine: End Product System not fielded-.-

lDocimmfetitatiOn Yes, extensive

Comfigiration Management Yes 6

n vviitiotial SW~ Interface Yes. %iser interface a(id support, env ironment
'I'vok' 1 sd. Rewuirements Aiialysist None( %'p

Tools UjsedI: Development In-house developed E'xpert Sys,.em Shell

Tols Used: Testing No

Formal Test Procedures Yes

Te.sting Criteria Experts and potential users ratings Of system

'lu''1 D atai Test. s(('uiarl()

Splf Modifying C"ode INo

4 22

% % .% %
% r , ...

%-

lr 00 % r-%



1.7~~~~, 1." W* W71-F?

4.1 Case Study Data

-6
Table 4.1-21 :PAR Government Systems Corporation - Sec andi Project Eneiiiy Activity (Sl'l'A)

FEATURE APPLICATION
Problem Category Decision aid

Domain Battle situation projections

Current System Phase Completed prototype

Type of Funding Contract

Experienced Al Staff Yes

Size of Development Team 3-6 computer scientists & in-house expert(s)

Level of User Involvement Moderate

Domain Expert Role Define problem and test system

Formal Development Procedures Yes

Type of Knowledge Representation Object oriented
Inference Mechanism Inheritance

Requirements Analysis Yes

Approval Mechanisms Informal - project staff

Iterative Development Process N/A

Design Changes Yes

Prototypes Built Yes

Development Time: Initial Prototype 30 man-months

Development Time: End Product System not fielded

Documentation Yes, extensive

Configuration Management Yes

CotiveittHbnu .1; hav rfatce Yes, databases and support environment

ToolsIb I Ised licqItireiegts Analsis None

l 11 VI. , lI Det'lopnie4-1ttt Flavors

T~ook 11.4t.4: 'stig None

Test 1rn'I rocedures4Ye

Tle-41,61g C riteria E~xperts and potential tiser rat ings of systemi

TVest Data Scenario

Self Modifying Code No)

4-23

Je~~ *~ .0'.



4.1 Case Study Data

Table 4.1-22 Sanders Associato's - Test Assistant (TESS) 'V

FEATURE APP LICATION
Problem Category Test equipment assistant

Domain Countermieasure systems

Cuirrent System Phase Matire prototype - funding cut

Type of funding Internal Research & Development

Experienced Al Staff None

Size of Development Team 3

Level of User Involvement Low

Domain Expert Role Knowledge definition

Formal Development Procedures No

Type of Knowledge Representation Frames

In ference Mechanism Frame-based and constraints -*~~

lh'quirements Analysis No

Approval Mechanisms Informal .

Iterative D~evelopment Process Yes .

IDesign Changes Yes, user interface and knowledge base .'

Prototypes Built Yes

Developmenit Time: Initial Prototype 6 months - .
Development Time: End product Not applicable

Documentation IR&D plan, listings, frame knowledge

Configuration Management Noe

Conventional SW Interface No 0

Tools Used: Requirements analysis No

Tools Used: Development Symbolics environment & some internally developed

'Fools Used: Testing No .

Formal Test Procedures NoS

'Testinrg Criteria U ser satisfaction

Tlest DI Dlaily usage

Sil\.IlI~ng %,dc No)*.*'

4-24

%
. . . . .. . . . . . .. . . .. . . .. l .. '. .

.. ~% % e % W % % %



4.1 Case Study Data

~%

Table 4.1-23: Schlumberger, Inc.- Dipmeter Advisor Systemi-

FEATURE APPLICATION %

Problem Category Interpretation

Domain Geology - dipmeter logs

Current System Phase Completed - commercial system

Type of Funding Commercial v" -
Experienced Al Staff Unknown

Size of Development Team Questionable 4-6 (assumption)

Level of User Involvement Active in system definition

Domain Expert Role Defined Dipmeter system knowledge %

Formal Development Procedures No &

Type of Knowledge Representation Rule-based

Inference Mechanism Forward chaining

Requirements Analysis Yes

Approval Mechanisms Informal (domain expert) -.

Iterative Development Process Yes

Design Changes Major throughout system development

Prototypes Built Yes

Development Time: Initial Prototype 18-22 months F

Development Time: End Product 4 years .- %

Documentation Informal (Assumption) :a-.

Configuration Management Unknown %

Conventional SW Interface Yes

Tools Used: Requirements Analysis Yes

Tools Used: Development Yes: Strobe, Impulse, lnterLISP . --

Formal Test Procedures Yes

Testing Criteria User acceptance; integration testing with the system
a- -~ , a, -

Test Data Graphical interface with scrolling log data

Self Modifying Code Unknown

4-25a... ... .. ... . • -.. 1

%~a '%a % %

% %-

mr- ~ ~ a -e !e- z.*Le-i



N~ 
.

% 4., 
% '

4.1 Case Study Data

Talble .t 1 24 Software Architecture and Engineering, Inc. - )v.-ision Support, SysI.,iii

FEATURE 
APPL.ICATION

Problem Category Decision support

Doinain Collaborative decision information support

Current System Phase Developiiient

Tvpe of Funding Crutrattual

Experienced Al Staff I

Size of Development Team 2

Level of User Involvement Very active

DIomain Expert Role Requirements definition. Analysis

Forrual Development. Procedures Yes, interrial

Ty ;V of Knowledge Representation R ile-ha.sed

Inference Mechanism Production system

Rqcluirerients Analysis Yes

Approval Mechanisms Mostly informal except requirements. CM approval for changes

Iterative Development Process Yes

Design Changes Yes

Prototypes Built Yes

)evchl)pient Time: Initial Prototype 12 months r

Development Time: End Product Not, applicable

Documentation Yes, requirements document, design document, increment plan

Configurat ion Maniagement Yes

(,onventional SW Interface Yes

-',)(sI (Te: Requiremnents Analysis Text processing programs .

I')()Ils Used: Development DSDS (Decision Support Development System)

Tools Used: Testing None

lor,,al Test. Procedures Alpha and beta testing

Testing Criteria Experts made final decision on system performance '..

''est Data Usage

Sf'll Ttlhifying (ode No

__- 0

'II

4-26

4. 
.' 

"w 
%r- - . - .". ." -. . '

,PP . . . . ," .. .,... % . . %. . ,. . . .%.. . .. ..-:.' ..-, ...-.. . : , .: .

F . . . ..'-00 -r".. ,,i"66 "g ' .', " -"-.,. ,'Y . / '-"-"." ',"...,",' *. . .-. -' -., .".-"'
• - -- -J"J #i", = % % .' ,p- 1. t, ,t % % " . - ,I , , .,-," " "- t' r . r• -



ft ..

Table 4.1-25 Software Architecture and Engineering, Inc. Sensitive Fiancial A-ia-.sis SyS-.1i

FEATURE APPLICATION -_____

Problem Category Classi licatioli

Domain Financial analysis

Current System Phase Completed - )ro(luction systeil.

Type of Funding Contractual

Experienced Al Staff IA

Size of Development Team 2

Level of User Involvement Active

l)omain Expert Role Involved in list process, defined schedule c':-\.%

Forinal Development Procedures Yes, internal 0
Type of Knowledge Representation Ruleh-ased

Inference Mechanism Production systei..

Requirements Analysis Yes, internal review

Approval Mechanisms No

Iterative Development Process Yes, incremental system developmuent , , . 'p

Design Changes No

Prototypes Built Yes

Development Time: Initial Prototype 3 months

Development Time: End Product 8 uoiutlus

D)ocullm entation Not re(Iuired by (iis (iillier. l ,itert;tl ri t, ".. .

Configuration Management Informal

('onvenitioial SW almierface Interfae with ronventiowml software via Alpo(Il ()S onui'iniands •

'look1s Used: Requireniiiets Analysis None

Tools Used: )evelopment KES, text. editor and Kl(ES parser

Tools Used: 'lesting Nole

Formal Test Procedures Case studies with known or(oftnes

Testing Criteria Perforniatice judged by experts

'rest Data 'rest (ase st.uiles, iudividial rlh,..

Self Modifying Code No

%

*t 27
- S.,.



4.1 (Uase Study Data

Frable 4.1-26 Tcxas Instruments Inc. -Prodluction Sche(Iulvr l'rojvct

F EA'TuR E A11111,1( *\l'l( )N
Problem~ Category schedilling Iiiechlinsill

Dontail 'I'ex tile libe~r produict i& n amd in vettry 4.
Current System Phase Project terininated prior to viable protot~ype

Type of Funding ( onhilurvlal

Experienced Al Staff Yesr

Size of Development Team 3

Level of User Involvement Minimal

Domain Expert Role Knowledge and constraint definition. 0
Formal Development Procedures No

Typem of K now ledge Representation Frarnc-based

Inference Mechanism Algorithmic mechanism controlled schedule processing

Requirements Analysis No

Approval Mechanisms None_

Iterative Development Process Not applicable -

Design Changes Yes

Prototypes Built, N

Development Time: Initial Prototype Not applicable

Development Time: End Product, Not applicaL~e 
V

D~ocumentation Informal memos .

Configuration Management Stamp of saved Lisp source code files

C:onventional SW Interface No

Tools Used: Requirements Analysis None

TIools Used: D~evelopment Lisp, windowing forimis management tool

Tools Used: Testing None

Formal Trest Procedures Planned but not applicable .
TVesting Criteria Interface, schedule checked for accuracy. Both tested together .- dX

Test, Data Schedule, user interface

Self Niodifying Code No

4-28%

%Y. ~ w *~ % %



4.2 Evaluation of the Case Study Data '%N

4.2 Evaluation of the Case Study Data

This subsection presents an analysis of the case study data depicting gencrally ,uo,noi a pcts, *,'J
relational trends and distinguishing features.

4.2.1 Common Aspects

The twenty-six case study tables were evaluated as a single group in an attempt to identify corn-
monalities germane to the development process regardless of features such as current project phase, . -
problem category or domain. In general, the projects appear to share a number of common char- . ./
acteristics as delineated below:

* Successful systems;

" Al experience;

@
" Small development teams; N

" Participative users; , -
.% .%**.%.

" Knowledge representation schemes; .

* Iterative development process; %.S- -

" Rapid prototyping;

" Use of development tools; and

" Static code.

All participants claimed that their systems were successful as measured by some criteria such as
user satisfaction, expert evaluation, productivity gains and/or demonstrating the feasibility of a .- .'

new technology. In addition, the project teams were generally comprised of 5 or less people and 0

included at least one engineer with Al experience. The users generally played an active role ill

system development and their acceptance was extremely important in determining whether or not
the system was a success.

The development process for all projects was iterative, including design changes and prototypiig %

For many of the projects, the initial prototype was completed in 6 months or less. The knowledge _
representation scheme for all of the projects was based on rules, frames or a combination of both. .P%,O. J&
Most of the twenty projects used tools during the development phase. Some tools were built by the
participants but many of the tools used were inherent to the Al workstation. 'Tools were gewerally

not used in support of requirements analysis or testing.

Lastly, evaluation of the case studies indicates that few systems include self-modifying code .

4-29

%u 
% .~ . *



%P %

.1.2.2 Relational Trends

4.2.2 Relational Trends

The case study data was also analyzed in separate groupings ws a function of certain relationln

characteristics. Those groupings that appeared to indicate significant trCnd.s are: No,

0 team size versus tools;

IR & I) versus commercially funded projects; and

• user involvement as a function of project phase.

These relationships and apparent features are discussed in the following subsections.

4.2.2.1 Team Size Versus Tools

The literature review indicated that both tool power and development team size were areas of
difference between Al and conventional software development. Analysis of responses to the ques-
tionnaire and further review of reports from Al development teams indicates there is a relationship
between the two characteristics. As noted earlier, the trend has been to provide tools of increased

4 power to accomplish specific functions after knowledge was acquired about the task. Tools have
also been developed to shorten system development time, to allow small teams of people to solve .,

still larger problems, and to automate the development process ensuring some higher degree of
(*onfidence in the consistency, quality, or reliability of the programs. 0

,Ao:ie very specialized tools were developed or purchased to perform specific system functions
such as data base interfaces, or micro-code compilers. Most tools were developed to support the *
development team efforts and were aimed at a better program implementation. There were some
tools used to assist in the testing effort. There were still fewer tools used in the fielded or mature
production phases of the KBS systems.

In general, the tools supported the development team processes. Tool usage was not as prevalent ,,,

in the other stages of a project. Fewer tools were purchased than were developed. More tools
were developed for IR & D projects than for contract projects. Tools developed in the academic 0%
community were adapted for use in IR & D projects.

4.2.2.2 IR & D Versus Contract Funding .

Of the twenty-six case studies, twelve were funded via internal research & development money,

nine were commercially contracted and five contracted by the DOD. This cross-section of tile data
revealed some interesting trends within the three groups. '

A\mong the IR & f) projects, several characteristics were observed. Namely, these projects more
,,f'ein follvcd st ructuired development procedures and produced more written documentation than
I li comnercially funded projects. In addition, initial prototypes were generally completed earlier

N (wit hin 61 mont las) when compared to the commercial systems. These traits seem to be commensu-
r;tv wit h t~aiuing and prolonging management support. The onus is on the project staff to earn

a, uua n agcrial support, by showing enough progress to satisfy them at specified time intervals.

4-30

~~~~~~% -U~~ .~ .


_.M _.P V.V- -. Fw vbi. r1 "W V' w11-. V 74 WN i . - V.

% % o.

4.2.3 Distinguishing Features - Ne o

Among the commercial projects, expert involvement seemed to be greater when compared to the
IR & D projects. In addition, most all of the commercial systems were developed to some end state
whereas many of the IR & D projects were terminated prior to completion. It, is not surprising SF.%.

that in the commercial sector, there is a greater commitment towards developing anl end product.

and not as much competition for the same pool of funds once the contract has been awarded.

The projects contracted by the DOD were similiar to the commercial systems. Along with displaying
the above mentioned characteristics, they also produced the most written documents of tile three

groups. They tended to use some form of standard, such as the phased waterfall development ?.

approach or a formal MIL-STD specification to design the system. If not adhered to strictly, .,-
formal standards were at least used as a guideline for system documentation.

4.2.2.3 User Involvement Versus Project Phase

Observations made from the case studies indicate that user and domain expert involvement are

both critical to the success of KBS software development. The user's evaluation of a system de-
termines whether continual financial commitment can be obtained throughout the development .
effort and helps the user develop realistic expectations of ultimate system functionality and per-
formance. Users tend to actively participate throughout the entire system development effort. '.'.,
However, according to the study, the user's involvement appears to increase from the feasibility .
to the development phase and continue into production particularly with respect to testing the %.'
system.

The domain expert's knowledge seems to be mainly required during feasibility and development of
the prototype in order to define the requirements, the system's knowledge, and the problem-solving
techniques. The expert also helps with the testing effort.

4.2.3 Distinguishing Features

In contrast to common aspects and relational trends, several of the cases reveal features that are P -
not widely reported among the study participants. One distinct characteristic has to do with the
use of audio/visual equipment during the development process. Specifically, during the knowledge ,
acquisition phase, both Northrop Avionics Division and Schlumberger-Doll Research tape recorded .- -.
interview sessions with the experts. The information reported was then captured for repIetitive 0

referencing and less subject to recollection augmented by the knowledge engineer's notes alone. In .

addition, the inflections used by the experts are maintained which may often affect the knowledge .. *..

engineer's interpretation of the data. -"--"-.

lit assessing user satisfaction with DSDS, SA & E video taped customer reactions while using tle

product. This approach was reported to be more conducive than asking the users questions about
performance while they are simultaneously acquainting themselves with a new systent.

Lockheed-Georgia Company's Pilot's Associate is being developed by a much larger team than the ."..

other projects in the survey. The distinguishing characteristic is not necessarily the size of the team . .

though. A more prominent feature is that several expert systems are integrated into the product. .

Therefore the number of personnel working with each individual expert system would nmost likely

be similar to the size of the development teams of the other projects.

4-31

%S
V%* % N- %TO(.. ', .J=- =.". p' .'. . 'f' -,.".°." %, %" % % % %-. %, - ' . -r I '% _P. a _PJ. - 'P.

.
.- Z._'.Z'''._

=
"'.

.~~~~~~~~~N -'--6- .4~t . .V ~..
'.4

4.3 SDI Related Issues/Implications

The development team for DEC's XCON system is also much larger than the others. The notably a

large size of the knowledge base (more than 10,000 rules) requires much support. Several knowl-

edge engineering teams, each comprised of seven to eight people, perform knowledge acquisition

and representation tasks, continually increasing the size of the knowledge base as new products

are developed and existing products are modified. Groups to manage administrative duties, user

support, and technical support also exist to provide assistance.

In terms of managing a large systems project, Northrop Avionics Division strongly recommends a

conventional software development cycle wherein iterations are acceptable. This technique would

involve the required engineering disciplines and implies that the engineers across the various disci-

plines must be knowledgeable in Al. Because a military systems outlook is so important, knowledge

enginers who are not experienced with large avionics systems development are inadequate for the

job unless the problem is well-defined and well-bounded.

4.3 SDI Related Issues/Implications

The twenty-six case studies provide an experience base from which SDI related issues and im- 0-

plicati-ns can be drawn. The most notable issues are acquisition risk reduction, tools, real-time -.-
processing requirements, project management and testing.

In term- of reducing the risks associated with acquiring a KBS system, it is prudent to examine those %

aspects that are common to all case studies. Namely, the development process for all twenty-six
pr()Ject was iterative and based on prototyping. With this method, the requirements specification. .

and the design are expected to change over some period of time with the ultimate goal of providing

a systvm that satisfies the users needs. In addition, it was noted that all of the case projects

employed a common set of knowledge representation schemes: rules, frames (or frame-like) or a

combination of both. The knowledge representation techniques for rules and frames seem stable

and wold not present risk in the application of this technology.
In the case stdies, reasoning strategies have centered on search and inferencing techniques. There

are several commercially available inference engines and LISP embedded language capabilities (Sec- N..

tIon 3.4.5) that have been used successfully. Extensive experience with the tools in a development
environment has led to a reduction in risk associated with their use for software development. Tool _r

use in ,lther phases of a KBS project has not been extensive and represents an area where more

effort needs to be directed. -

Since all the case study participants claimed success in some manner, it may be wise to scrutinize .

deviati,,ns from the ab(-ve techniques during the KBS system acquisition process.

An important issue involves the nature of real-time processing that is likely to be required in SD!
applicat ions. There is only one system that was represented as having real-time requirements -

commensurate with SI)l needs, and it was never tested to verify that it met those requirements. %

The reqire'me'nts on tMS software in the SDI system are likely to be at least, an order of magnitude

greater Ihan for a system wherv the operator interaction is the pacing element for real-time.

With two exceptions, development teams have been uniformly small and focused on a single project 0
that was scoped to fit their capabilities. It is expected that the BM/C1 Al software will be larger 41 IN,-

4-32

.F W17

4.3 SDI Related Issues/Implications -r

and more complex than any of the projects reported on. There are questions about how to partition "-.
the system so that several teams can work on the problem, and ensure that tI(, ftititial iiterfa,'es
will work. Project management is also an issue since there is no experience availalle in h(ritt| of

managing a very large KBS system. Application of tools to support management decisioiis in the
development of a system also needs further study. %

The testing aspect of expert system development is not well-defined because of the nondeterministic ,-

nature of the solution space. Consequently, those case systems that pertain to military applications .

are intelligent assistants or decision aids as opposed to autonomous systems. In addition, for all
of the cases, the test data is based on either hypothesized inputs or actual usage. In terms of SDI
applications, the testing aspect has several implications as delineated below.

The nature of a decision aid is that the responses or conclusions reached are not 100% ac.curate.
Because human intervention is expected in reaching a final decision, some degree of system iniac-
curacy is acceptable. For SDI applications, however, the service period of the system is expected
to be so short that there will be little possibility of human intervention (49, Parnasi.
In addition, heuristic programs are often developed by trial and error using the concept of build

a little, test a little.When errors are encountered, the expert is asked to review the situation and -'
add more knowledge. Because heuristic programs may exhibit important gaps in knowledge at •
unexpected times, this approach would not be acceptable for many SDI applications. %",.,

Furthermore, the best expert system simply imitates an expert exceptionally well. Since humans $..
are not perfect, expert systems cannot be expected to reach accurate conclusions all of tt(time.

In terms of test data, it would be impossible to test an SDI system during actual use. Furth(rmore,
the set of cases that could be hypothesized would not come close to covering the set of all possible
situations. The software systems addressing SDI objectives will be significantly larger and mor, .-v

complex than any systems built to date. Consequently, the behavior of these systems under all .

conceivable circumstances cannot be known in advance. Another major factor complicating the %-"."
prediction of potential stimuli is the use of enemy countermeasures of which there is no (current 5W

knowledge. A significant aspect that has not been addressed is how to test a system for robiustness
% in the face of uncertainty.

a. ~% . .A

As indicated by the commentary in this subsection, continuing research is required in terms of the "

application of KBS to the SDI. More details are presented in Section 5.3.

• I

Na'..
0 1

4-33

%.
.

%"

r.... . .%

'3SECTION 5 %

Synopsis '

5.1 Comparison of KBS Development Process to DOD-2167

The software development model under l)OD-STD-2167 is patterned after tile waterfall model pe-
viously discussed and includes the concepts of activities, products, reviews and baselines to further Z.. .

expand the waterfall concept. The model represents software development from tile government IVW
viewpoint, and as such visualizes the development process as a series of sequential phases with NO
reviews and documentation integral to each particular phase. It is generally recognized by both
government and industry that software development is not a well-bounded sequential process but
instead consists of overlapping phases. '

The 2167 waterfall model was developed to provide government insight into software developmenlt

* . progress and to provide control mechanisms over the evolving product as developnent occurred. ..

There was a strong configuration management influence in developing the model which resulted .

in emphasis being placed on configuration identification through the concept of comiputer software

configuration items(CSCI's), and configuration control. Although 2167 provides no guidance on
what constitutes a CSCl, a companion document, M1L-STD-483, does provide guidance concerning

CSCI selection. The 2167 requirements for baseline establishment and control provide the mecha-
nism for controlling requirements, design, and code as it evolves. Associated with tile establishmlenit
of baselines are various reviews aimed at assessing software development progress at various phlase 2
points (e.g., requirements analysis, preliminary design) and determining readiness for baseline con-
trol. The documentation produced was designed to be a natural fallI-out of the acti v ities %%II t bin1 a

particular phase of development. N

This ordered, phased approach was expected to improve the DOD posture for developing and
supporting software. The documented 2167 model was designed to provide: visibility and control
over the evolving software products; a quality product at delivery; and a proper environinviit for

nllailtiellilct. 111141 Iuiodilhtittiot, of the software inl it-s fielded environ nent AlIt Itoligl 216-7 is .1 neN%

stilzti arIl .lev toln developilgttents tdtat have followed the principles of 2 167 have gettertMlN beenl
stic-cessfitt I evelopi'tttts ;onol have provided software that. Is nutint-aigialble aind supp~ort~aibde wlhen~il

Axstated prey i1181y, thl IIS syst.('ii (leveloptieWt process is a highly it ert ' l sCt and because *-.

of this ni' st. models rilpreseitt. olevelopittetl as all ilicr('ttental process reflect I ng bidd 44 111/ -u It
p E lt fi iltl(ihet hEl Nodels developed for expert. systems, for example. clearly definte h le AlI

svte tevloneit roes a citin-sone(5,9 II as- otli,Sco% ni w%-i I feedback to atN~ of

the prey bus- plm-wes of development.. Conmtrast this with the phased] development of software tider %*

l)Ol-STI)-2 167 and it, is obvious that there exists incomnpatabi i ties that are of significance.1

''lhese incompatabil ities are not significant in terms of activities performied dhiring development bilt

instead are mainly related to the use of prototyping KBS's as discussed in Section 3, Whereas tile
33%

%5

~%
%

-

~~~~~~~~~~~~~~~~~~~~~ %3* '. '. 
4 \'~...', ,, 33,- . 33. *3./3 \



. * . k *. . . . . . . . . M P * , -Wt,-,%

5.2 literface of Conventional and KBS Software

2167 rniodel and its use in the development of conventional software is essential oriented towards

defining the total requirements, then producing a design followed by complete implemiientation, the

KBS approach to system development advocated by most developers follows a different planned %

approach. KBS systems typically define the problem domain, then begin by designing, building "..

and testing some small subset of this domain. Feedback from this first version of tie software can %

then be incorporated into the next increment with its added capabilities This process continues

until the complete domain has been implemented or in many cases never ends as fiirther domain

knowledge is collected.

This iocremental development approach, when viewed from a documentation, review/audit, and
baseline management perspective, leads to the need for a new look at the management an(] technical
control iechanisms associated with KBS system development. Questions to be considered are: At _
what [int in the development process are controls established; What reviews are conducted and _____
when; and What documentation is produced and when? The incremental nature of the KBS
develol mnent process must be factored into providing answers to these questions. Further, it is
expected that fture SDI system components will include both conventional and KBS software. %

The presence of both types of software will require that the development approaches, attendant - W.

reviews audits, configuration controls, and documentation be compatable. The model for the KBS
developmenit process is a part of the Volume II report.

5.2 Interface of Conventional and KBS Software

Interface of NIS with conventional software is focused on two areas of major interest: conventional " -

programs written in Ada and data bases. The language Ada is chosen to represent conventional
software because of its standardization and projected usage rate in large systems of interest. Data
bases arc choser, as another focal point because of the obviously important, role they would play in
any battle nanagement system of significant size. The following sections discuss the management,
functional, testing and integration aspects of the interface issues between K13S and conventional
software ."

5.2.1 Management Perspectives

There are critical issues associated with the sequencing development of both KBS and conventional
software. Management planning, reviews and direction could take different forms depending on -

whether the KS software will be retrofitted, integrated during development or planned for forward
fit with a conventional software system.

Bridging the differences between the different and possibly competitive technologies, methodologies 0
and capabilities requires communications and contract mechanisms that are appropriate to the
task. Imiiplicit in Ih e comnimunications and contracts among tile cooperating groups is the creation
of st), sor t of m)ean ingful iiterviediate prodhncts tiat can be used to mneasui re performance, risk,

ni~ l i n' m 1) , It. I il ," ,

(ost ,nanagemnent will be complicated due to the risk factors associated with both the development
of MI)S soft ware and its integration with conventional software. Costing algorithms that have been

5-2
%-_ %% ''.r'-'".,

4

.0.



777-.~

5.2.2 irnpleien tation Pei-spectives

to

applied to conventional software development with sonte success have not beein atpplicable to Ille
KBS development efforts. The integration of both software type's in a single system i lity also subt IN,
change the complexity level so the costing algorithms are no longer valid approximations to, even
the conventional efforts cost.

The integration of KBS and conventional software in a system will require the extension or tailoring
of familiar management procedures to accoinodate the characteristics of differing development
styles. One of the key items in the extended procedures will be the identification of products that, '17
can be used to track the expected project cost, schedule, performance, and accomplishment goals %*

versus the actual progress.

5 .2.2 Implementation Perspectives

Issues in the actual implementation of KIIS and conventional software include specification, design, ..

interfaces and integration. There are additional decisions to be made in thle systems engineering
allocation process. With the introduction of KBS, there has to be an assignmnent of intelligence and :

knowledge that must be shared by the user of the system and the computer systemn. System level
controls, feedback and interface will have to undergo more cycles of iteration than is comninot for ,:

conventional software until there are adequate engineering guidelines and knowledge to breakout V
these functions in a cookbook manner.

There are top level design issues including synchronization and execution of programs and handling 0

of the data and information flows. Using present technology, the questions about control flbwV% apply ~-
predominantly to Ada program interfaces. With the introduction of smart memories or data base -

machines into the system architecture, cort'ol flow would become a prominent question for dlata
base interfaces as well. Specific questions on program controls are phrased as follows. H-ow do
the Ada and KBS processes know when to start, stop, and synch or at least align in a comninom
reference frame? The questions about data and information flow apply to tile Ada and d&ta base
interfaces equally and include: What mechanism is required to handle indeternintant sized amnounts
of information or data? What do the data interfaces look like and how can they be defined?

1,1114:111 4'dl i'0111 ' lmn i lieI e1-4en rim ao n lalnglmagkv c pabilit it's a d 111111 al Iot', I 'lc
1ti4lei tent OneCtIt C0111tler Ilmmgli1gl I rtilaimi1 lindo VXIM-(SSIV1t %. liltegratlioll, task ait a~Ilo'
4-llicien.N~ . FX.1I I I les- of Issies inItit Ivl: Ata I txectit iont of translated K( IIS programs, t tI at i.

t.tit of .self- 111odify ing ltrotgriuts; Control pass-1ing to possibly liond eritmating prograil 111di

Iliwn rm for comirrent. solution scarelmes.

litegration of large dissimilar programs historically has been troiublesonc 'I'll,
software fault tolerance capability, and the nmost robuist, of coinunicat ions anid

will be required to prevent more serious difficulties. Stability of interfaces h-t 'A~

software is one means of ensuring better communication both wit hinl I het ldI- 1:1

between programs. This interface definition might be one of I1 titr4 lilt# T111

tindler mtanagement control.

S53



VOLUME 1(U) SANDERS ASSOCIATES INC NASHUA NH
CSARDANIL ET AL. DEC B? RADC-TR-87-249-YOL-L

UNASSIFIED F362--85-C-S25 F/O 12/5 N



L.O.W

t. Rm

11111.25 11- 4 111--

MICROCOPY RESOLUTION TEST CHART

l',A '-

yuS



5.2.3 Testing and QA Perspectives

5.2.3 Testing and QA Perspectives

The integration of KBS functionality with conventional software raises many additional questions.

These can be grouped into the following broad classes, flow should nondeterministic prosses be

tested? In expert systems, how do experts become certified? With ill delied requirements how

can teqting procedures be derived?

The nature of the application may itself add a dimension of complexity to testing and QA if the
proposed operational environment has many unknowns that can affect the nature of the system or
its responses. Quality Assurance of a system that is self modifying will require new standards and
techniques.

5.2.4 Comparison of Development Techniques

Contrasts and similarities are noted between the development approach, and the intermediate and
final products from KBS and Ada developed programs that have significance for their system level
integration.

Ada developed programs rely on support from the language, standards for development, man-
agemnt and review, along with modern software engineering practices. KBS programs rely on
support, tools, and power from the languages used, highly trained/skilled developers with high
standards of integrity and development paradigms that have no analog in conventional practices.
'There are different problems inherent in the milieu of KIBS than those in conventional software en-

vironments. These include dynamic growth of the data structure, control of the operating system,
and indeterminancy of results.

Each development group would feel more comfortable using its native language for program de-
velopment unless the application was more naturally expressed in the other language. There have
only been preliminary studies in the area of productivity and release error rate. The most recent
available study used a controlled experimental method to evaluate relative productivity on the four
programming tasks of pattern matching, maze solution, frame editing, and a heap sort 132, Hattoril.
The experimental results indicate doubled productivity for LISP over Ada. The error rate reported
in this study was slightly lower for LISP. To minimize language related problems, management
needs to enforce the necessary standard coding conventions and a rigorous walkthrough and review
process to eliminate undocumented tricks or bizarre coding. 0

There are several similarities which are recognizable to practitioners in the different groups. KBS
techniques clearly build on abstractions. The languages used in KBS efforts are more powerful, so
smaller units of code are required for most classes of functions. When a team of people work at a
single terminal, there is an aspect of code walkthrough. Implementation of the chief progrnmmcr

fit, ,c, I ',,t is necessary to avoid team members stumbling too far afield. The KBS approach to
development is recognizably build a little, test a little.

Use of a contract basis for data representation, protocol, budgeting of computer system resources
and relt nt oio of program execution control within the conventional software package are methods
that could i' used bY maunagement to ensure that the programs can be successfully integrated.

Just as the system engineering process now allocates the system functionality to hardware and soft-
ware. there' will have to be a similar process in the allocation of function and tasking to modules : .

5-4

0

% %



5.2.5 Integration with Data Bases

with or without intelligence as well as some specification of the level of intelligence that is re-

quired. Recognition of this aspect would interface the KBS and conventional software de velopmen. -ll

teams with the system engineering team to produce a working level requirements and specificatiom
document.

5.2.5 Integration with Data Bases

Integration of KBS software and data bases is critical because of the large amnounts of real world

data that are accessed by BM/C" systems of the size contemplated for SDI. The two critical issues
to effective integration of the processes are: efficiency in data flow from the data base to the K BS
application; and the effective direction and control of the data base by the KBS application. It is

expected that the strategies to effect these implementations would be different depending, on the
data base model, the domain of application and the particular type of KBS software.

5.2.6 Management Implications

From a management viewpoint, not enough is known about the KBS development process to have
any rules of thumb for gauging how well development is proceeding. The identification of ieaningful '

milestones in the KBS development stream are difficult to assess due to the relative inexperience
in management control of developments in this technology. This same lack of experience applies
to issues across the board such as the contract agreement process, standardization, and manpower

planning.

The focus of the statement of work in this area is in the identification of a standard for hIS
software interfacing with conventional software, and in the managenent implications of ilitragroup ?.N

activities. These software interfaces include the management and distribution of data, cont rol and %

intelligence.

5.3 Application of Al to SDI Issues

The application of Al technology to SI)I BMIC appears to be concentrated into two areas:
applications and support tools. SDI studies conducted to date have primarily concentrated on the %

support tools aspect with very little definition in the applications area. T.-%

The application of Al to support tools principally affects the areas of planning systems and knowl- - .

edge based software assistance (KBSA). The KBSA concept of providing an auitomated assistant
to support software developers is envisioited as a tool that will contribute significantly to software "-

productivity improvements.

fIt tie applications area, the potential for applying Al is only limited by the risk ,nvisi,, ied in
developing a particular application. SI)I studies to date have left the specilic applicatiou of Al .

a.V at t,, I du'.it I ilem. Ilowever, exten.ive research and levelopment work is tmiderwaN in the A V *

areas of decision support aids, exlert maintenance systems, knowledge based signal processing and %

robotics. All of these research efforts have the potential of providing significant contributions to

SI)I lAIl/W'. %

.... ' *



Bibliography

III Addison, E.R. "D~esign issues for a Knowledge-Based Controller for aL'lrack-Wle-Suiai Ildr
System". April 1986.

121 Apte, C. and Weiss, S. "A Knowledge Representation Framework for Expert Control of ]n-
teractive Software Systems". Technical Report, Rutgers University Department of Computer
Science, 1984.

[31 Bachant, Judith and McDermott, John. "R1 Revisited: Four Ye-irs in the Trenches". Thc A I
Magazine, Vol. 5, No. 3, pp. 21-32, Fall 1984.

141 Balaban, David J. and Nelson, David 0. "Flat is Not Necessarily Good". April 17, 1985.
Lawrence Livermore National Laboratory.

151 Barstow, David R. "Artificial Intelligence at Schlumberger". The AI Magazine, Vol. 6, No. 4, ~
pp. 80-83, Winter 1985.

161 Boehm, B.W. "Software Engineering". IEEE Transactions on Computers, Vol. C-25, No. 12,
pp. 1226-1241, December 1976.

(71 Bonasso, R.P. Jr. "Analyst, MTP-83W00002, Contract F19628-84-C-0001". February 198-1.
Internal report, MITRE Corp.

181 Booch, Grady. "Software Engineering with Ada". The Benjamin/Cummings Publishing Comi- 6"
pany, Inc., Menlo Park, California, 1983.

191 Boome, J. H. "A Knowledge Acquisition Program for Expert Systems Based DII Personal
Construct Psychology". International Journal of Man Machine, Vol. 23, No. 5, pp). 495 626, :V~
November 1985.

1101 Brachman, Ronald J. and Levesque, Hector J. "Frame Representations and] tile leclara-
tive/ Procedural Controversy". 1985.

(111 Bradley, S. and Buys, R. and ElSawy, A. and Sipes, A. "Developing a Microcomputer based
Intelligent Project Planning System". In Proceedings of Expert Systems in Goveranent Syrn-
posiurn, October 1985.

1121 Buchanan, Bruce G. and Shortliffe, Edward H. "Rule-Based Expert Systents: Thre i~cn
Experiments of the Stanford Heuristic Progromming Project.". Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1985.

1131 Chandrasekaran, B. "Generic tasks in Knowledge based reasoning: Expert Systems at the right
level of abstraction". In Proceedings of Expert Systemps in Goa'eritnnent Syvnpo.aurn, October
1985.

1141 Cohen, Paul R. and Grinberg, Milton R. "A Theory of Heuristic Reasoning about U.ncer-
tainty". The AlI Mlagazine, Vol. 4, No. 2, pp. 17-24, Summer 1983.

1151 D~avis, Randall. "Exrpert Systems: Where Arc H/c? anid lt'herr Do 11' Go Froma~ lt re.
Technical Report, MIT1 Artificial Intelligence Laboratory, 1982.

BIB-I

% %.*. %

4~$L&~'h% %* % % 1
~ ~ ~ V*P,.~x.t- 1%.*.



Bibliography

[161 Drastal, G. and DuBois, T. and McAndrews, L. and Straguzzi, N. and Raatz, S. "Economy
in Expert System Development: Aegis Combat System Maintenance Advisor". April 1986.

[171 Druffel, L.E. and Kernan, Joseph E. and Paige, K.K. and Riski, Williami A. "Report oil tile
Dol) 'rasqk Force on Software Problems". 1982. rThird Draft, .ifly 15.

[181 Eitgleian, C. and Berg, Charles and Bischoff, Miriam. "KNOBS: Ali Experlivental K~nowl-A
edge Based Tactical Air Mission Planning System and a Rule Based Aircraft Ideitilicatiogi
Simulation Facility,". In In Proceedings of the International Joint (Confrence oin Arficmiai

Iritelrqence , 1979.

[191 Fikes, R. and Kehler, T. "The Role of Frame-Based Representation ill Reasonting". A('AI, Vol.
28, No. 9, pp. 904-920, September 1985.

[201 Freiling, Mike and Alexander, Jim and Mesuick, Steve and Rehfuss, Steve and Shulman, Sherri.
"Starting a Knowledge Engineering Project: A Step-by-Step Approach". The Al Magazine,
Vol. 6, No. 3, pp. 150-164, Fall 1985.

1211 Gallant, John. "ADL Putting Al Technology to Work". Computeruorld, Vol. 19, No. 13, pp.
45 -50, April 1985.

1221 Gates, K. H. and Adelman, L. and Lemmer, J.F. "Management of Al System Software Develop-
nent for Military Decision Aids". In Proceedings of Expert Systems in Government Symposium,

October 1985.

1231 Genesereth, M. and Ginsberg, M. "Logic Programming". ACM, Vol. 28, No. 9, pp. 933-941, .
September 1985..r

[241 Gilmiore, J1. F. and Pulaski, K. "Comparative Analysis of Expert System Tools". In Applica-
lions of Artificial Intelligence HI, April 1986.

1251 Goldberg, R.N. and Weiss, S. M. "An Experimental Transformiation of a Large Expert Knouil-%

eidqr". Technical Report, Rutgers University, Department of Computer Science, 1980.

[261 Goyal, Shri and Prerau, David and Lemmon, Alan and Gunderson, Alan and Reinke, Robert.
"COMPASS: An Expert System for Telephone Switching Maintenance". In Expert Systems in
Go icrin zt Symposium, October 24-25 1985.

2 71 Green, P.E. "Resource Limitation Issues in Real-Time Intelligent Systems". April 1986.

1281 Hlankins, G. B. and Jordan, J.W. and Katz, J.L. and Mulvihill, A.M. and Dumoulin, J. N. and
Ragusa, J. "Expert Mission Planning and Replanning Scheduling System". In Proceedings of0
Exrjcrf .Sy.ricis in Governinent Symposium, October 1985.

29jI l;rmimni, Patid andc King, D~avid. "Expert Systcmts, Artifical hitelligcnce in Business". John
Wilt-) X' So,,w, New York, NY, 1985.

301 Hart, Anna. "Knowledge Elicitation: Issues and Methods". C.omnputer Aided Design, Vol. 17,
No. 9, pp. 455-462, November 1985.

BIB-2

4 4~'% 4 % 4 %~ If.iV'



Bibllography

1311 Hart, Peter. "Talks about Expert Systems". IEEE Expert, Vol. 1, No. 1, pp. 96 -99, Spring
1986.

1321 Hattori, F. and Kushima, K. and Wasano, T. "A Comparison of LISP, 1110Ol)(,and Ada
Programming Productivity in Al Area". In Eighth International Confcrn,'c in S,ftwar l,-
gineering, Aug 28-30 1985.

[33] Haugeland, John. "Artificial Intelligence: The Very Idea". MIT Press, Cambridge, Mas-
sachusetts, 1985.

1341 Hayes-Roth, F. "Rule-Based Systems". ACM, Vol. 28, No. 9, pp. 921-932, September 1985.

1351 Hayes-Roth, Frederick, and Waterman, Donald A. and Lenat, Douglas B. "Buildily E.rpcrl
Systems". Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1983.

1361 Kaplan, Jerrold. "The Industrialization of Artificial Intelligence: from By-line to Bottom %
Line". The Al Magazine, Vol. 5, No. 2, pp. 51-57, Summer 1984.

1371 Keller, R. "A Survey of Research in Strategy Acquisition". Technical Report, Rutgers Univer- $or-%

sity, Department of Computer Science, April - July 1982.

1381 Kline, Paul and Dollins, Steven. "Choosing Architecture for Expe'rt Systeus". Technical Re-
port, RADC Technical Report TR-85-192 October, 1985.

1391 Levine, A.P. "ESP: Expert System for Computer Performance Management". April 1986.

1401 McGraw, Karen L. and Bruce A. "The Phantom Crew Al in the Cockpit". DSH'4E Dcft ns"
Science 8 Electronics, Vol. 4, No. 11, pp. 44-54, November 1985.

1411 McLaren, R.W. and Lin, H.Y. "Knowledge-Based Approach to Ship Identification". April .
1986.

[421 Metzger, P.W. "Managing a Programming Project". Prentice-Hall, Englewood Cliifs, N.J.,1973.

1431 Milne, R.W. "A Few Problems with Expert Systems". In Procecdings of Exipcrt Sy'.cst,.4 it
Government Symposium, October 1985.

1.1.11 Myers, Wre. "li.rothtimi to Ixpert Systems" . Il'!", l',rpcrt, Vol. I, No. I. pP. 100 109,.
Spring 1986.

1451 Naedel, Dick. "Ada and Embedded A]". Defensr Elecrmnics, Vol. 18, No. .1, pp. 90 100, April -
1986.

1461 Naughton, M., James, Dr. "A Major Conference otn Expert Systems". In Explr- hiophulgc
Systems, 1985. pp. 165-172.

1471 Orciuch, Edward and Gilbert, Kenneth and Marshall, Charles. "The Application of Niodular
Software Engineering Techniques to a Very Large Expert System". In Pr'ut'duugs .f ,lt

N,'pcicplh AnI Ial lii Intcrntional ('onfcrcnce', January 1986.

1-.81 (-1illy, C. "Application or Al, I1". In Prrcdlings of Si'IE, April 1985.

11111 3

% % % %
0_0 % e % 0.%..%...



Bibliography

.491 Parnas, D)avid Lorge. "Software Aspects of Strategic Defense System&'." (ComIII111entn4-1hs of

the ACM, Vol. 28, No. 12, pp. 1326--1335, December 1985. SIX

501 Parsaye, K. "The Evolutionary Road to Expert Systems".- ]in hnctinu f.rjieI y.%ln

mi Govte ritiment .Synillositint, October 1985.

'51] Pearson, G. "Mission Planning within the Framework of the Blackboard Model". [it Provecd-
inqA of Exrpert Systenis in Government Symposium, October 1985. ~

1521 Polit, Stephen. "RI1 and Beyond: Al Technology transfer at 1)EC". The A] Magazine, Vol. 6,
No. 4, pp. 76-78, Winter 1985.

(531 Prerati, David S. "Selection of an Appropriate Domain for an Expert System". The Al
Maiigazine, Vol. 5, No. 2, pp. 26-29, Summer 1985.

1541 Prerau, David S. "Selection of an Appropriate Domain for an Expert System". AI Magazine,
Vol. 6, No. 2, pp. 26-30, Summer 1985.

1551 Reiner, Julius and Smith, Jeff. "Practical Al Impemnentation Issues in Real-Time Multisensor
Function". In G;overnmlfent Microcircuit Applications Conference (GOMlA C), 1985.

[561 Royer, Thomas. "EIA Workshop Trip Report". September 1985. Personal Communication.

[571 Sandford, 1). "Paris 1, If, III of KNOWLEDGE BASED LEARNING SYSTEMS DS + CVS
it Proposal for Research CVS = An Intro, to the Meta-Theory &. Logical Foundations".

Teclimical Report, Rutgers University, Department of Computer Science, May 1980.
% ,.

158] Schwartz, Tfom J. "MCC Says Better User Interfaces Key to Complex Systems". December
23 1985. Newspaper.

[591 Scown, Susan J. "The Artificial Intelligence Experience: An Introduction, Digital, Inc.". DEC
Trechnical Report.

1601 Sheil, Beau. "Artificial Intelligence Tool Box". In Artificial Intelligence Applications for
BuRnesicqs, 1984. Proceedings of the NYU Symposium Editor, Walter Reitmian, May 1983.

[611 Sheil, Beau. "Power Tools for Programmers". Datamation, Vol. 29, No. 2, pp. 131-144,
February 1983.0

621 Smith, Reid G. "On the Development of Commercial Expert Systems". The Al Magazine,
Vol. 5, No. 3, pp. 61-73, Fall 1984.

J63J Stanley, Anne M. "BAlB Integrated Diagnostics, Proceedings from NSIA Conference in Alexan-
dria". Unpublished paper.

16,11 Stevetison, A. and Fox, M. and Rabin, M. "TESS: Tactical Expert System". April 1986.

165;Toba, P1. amid lHogermi, S. K. and Cross, S.E. "SENT1INEL: An Expert System Decision Aid
f' r a Co'mmmanid, (Cont rol amnd Communication Operator" . April 1986. .-. ~ S

[66! Vvse;c , . I "Expertise Mn Debugging Computer Programs - A Process Analysis". biterntational
.Iilt luiq of Alan Abirlihine Stridierq, Vol. 23, No. 5, pp. 9-494, November 198.5.

BIB-4

%~% %% %



Biblography

1671 Waterman, Donald A. "A Guide to Expert Systeins". Addison-Wesley Publishing C,,ip)Wly,
Inc., Reading, Massachusetts, 1986. -.

[681 Weiss, Sholom W. and Kulikowski, Casimir A. "A Practi'al Guidh t) l)csi;gning rxp(rl Sy.. k
tens". Rowman & Allanheld, Totowa, N.J., 1984.

169] Winston, Patrick Henry. "Artificial Intelligence 2nd Edition". Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1981.

170) Yager, R. R. "Explanatory Models in Expert Systems". International Journal of A1, Ala-
chine, Vol. 23, No. 5, pp. 539-550, November 1985.

.m

"'3

% .
-

." -° ' %.

B" " " '"'-

%~ ~ ~ V. % 4

N N %



"WWWWAR.

Glossary

Ada - is a programming language that was designed to meet the needs of programmers and to

embody the concept of design methodologies by encouraging and supporting good dlesign anidl
programming practices.

Artificial Intelligence - The science of making machines do tasks that would require intelligence
if done by man. An approach that has its emphasis on symbolic processes for representing and
manipulating knowledge in a problem solving mode.

Automatic Programming - The ability to use programs to automatically generate other pro- ,
grams. .

Backward-Chaining - An inference method that begins with a goal and works backwards to seek .
a chain of premises that accounts for all the facts at hand.

Causality - Inference mechanism based on the understanding of the structure and/or function of
a given device.

Computer Vision - Perception by a computer, based on visual sensory input, in which a sym-
bolic description is developed of a scene depicted in an image. Used synonymously wit, image
understanding and scene analysis.

Deduction - A process of reasoning in which the conclusion follows from the premises given.

Demon - A local rule or procedure which is triggered upon changes to specific properties in a
structured knowledge base.

Domain - The problem area or region of knowledge(e.g. bacterial infections, fault diagilosis or
computer configuration). %

DWIM - Do What I Mean. Part of the InterLISP environment with user facilities such as correcting e
mispelled words, variables and code.

Empirical Association - Inference based on the association made from previous experi'nce or
observation. %

Event Driven - A forward chaining, problem solving approach based on the current problem -
status. S

Expert Systems - Al systems that reflect the skill, experience and judgement of humans knowl- .-
edgeable in a particular field.

Explanation Facilities - Ability to provide a trace mapping on how a particular problviii was -.

solved.

Exploratory Programming - Conscious intertwining of system design and implenlctitat iul. " % -

Failure Tolerance - Term used in testing to statistically indicate the allowable failure rate. For .,,-f
example, to meet acceptance criteria for a given system, it must generate accurate results, say, 95 r-,,A ,ee

percent of the time. •

Fault Diagnosis - Determining the trouble source in system.

GLO-I

- . . . . 1- " I'.
,,'-.



Glossary*~

Forward Chaining - An inference method that gathers pieces of information ai aeipt i-nall

build forward to an end goal.

Frame-Based Knowledge Representation - A representation method that chsters clomely as-

sociated knowledge about a class of objects or events. A frame is a data structure that asociates

one or more features with an object in terms of various slots and particular slot, vales. The .lots

may be filled by values or perhaps pointers to other frames.

Goal Driven - A problem solving approach that works backwards from the goal.

Heuristics - General rules of thumb used by an expert to process information in a particular

problem area.

Inference Engine - A program's method of navigating through a knowledge base in an attempt
to solve a problem.

Inferential Rule - An associated link between antecedent, conditions and resultant beliefs that .. .
permits beliefs to be inferred from valid antecedent conditions.

Instantiation - Replacing a variable by an instance that satisfies the system or the statement in INV
which the variable appears.

Intelligence - The degree to which an individual can successfully respond to new situations and
problems. It is based on the individual's knowledge level and the ability to appropriately manipulate
and reformulate that knowledge as required by the situation or problem. , ,

Intelligent Assistant - An AI computer program (usually a knowledge-based system) that aids -
a person in the performance of a task.

Knowledge - Knowledge in Al is basically comprised of facts, beliefs and heuristic rules.

Knowledge Acquisition - The process of extracting and formalizing the knowledge of an expert
for use by an expert system.

Knowledge Base - Collection of facts, inferences and procedures, corresponding to the types of
information needed for problem solutions.

Knowledge Based Systems - Another name for expert system

Knowledge Engineer - A software engineer specializing in the techniques of knowledge acquisition % %
and knowledge representation.

Knowledge Representation - Formalized structure of facts and heuristics that encompass the
descriptions, relationships and procedures.

Knowledge Source - The body of domain knowledge which pertains to a specific problem. (i.e.,
expert).

LISP - A principal Al programming language. By definition, LISP, is highly recursive, and due 'T -

to an untyped and applicative framework, highly supports symbolic computing. There are many -

LISP dialects which include: .-.-

* ( I1n1ion LIlSP; -

* hnterlISP;

GLO 2

% % %
-"--" -- """ " "' " .= -"" S 'S -'-" " """** " "-- ","-" " -" *-""---- .-.-- -> :-

e..* %, ,, % % V % ."- .- " " " , " , " . ' , - . " ,' . , . .% N % % %



O

Glossary N

" MacLISP; and %

" ZetaLISP.

Metaknowledge - Knowledge about the structure of and how to use knowledge. * -

Metarule - A rule which prescribes the manner in which rules should be used.

Natural Language Understanding - The response by a computer based on the meaning of a
natural language input.

Object Oriented Programming - A programming approach focused on objects which commu-
nicate by message passing. An object is considered to be a package of information and descriptions -"

of procedures that can manipulate that information.

Planning Systems - An expert system application that performs planning design actions. lo

Predicate Calculus - An extension of propositional calculus. In predicate calculus, elementary
units are called objects. Predicates are statements about objects. e

Production Rule - A modular knowledge structure representing a single chunk of knowledge, -

usually in an If-Then or Antecedent-Consequent form.

PROLOG - An Al or symbolic programming language that is based on predicate calculus.

Prototype - An initial model or system that is used as a basis for building future systems %

Rapid Prototyping - An approach used in system development to quickly generate a working
model that simulates a response to a simplified version of the problem at hand. Through incremental .

development, the simplified model is made increasing complex in ultimate response to the problem "

statement.

Robotics - One Al research branch that is involved with allowing computers to see and manipulate .,.,.,

objects in a specific environment.

Rule-Based Knowledge Representation - A representation method comprised of a set of pro- .-

duction rules based on a situation and an action ...e.g. If Antecedent - then Consequent type of
structure. A rule is a conditional statement consisting of a part comprised of one or more if dauses >..

which establishes conditions that must apply if a second part, composed of one or more the', clauses .-..-.

is 1.o l, acted 1tpon. 0
Iiuleset. - A set of ruiles that constitutes a module of heuristic knowledge. ..' ,-
Satisfice - Achieve a solution that satisfies all imposing constraints.

Semantic - Specifies the meaning or significance of a symbolic expression.

Semantic Net - A knowledge representation scheme composed of nodes describing objects, and

links describing relationships between nodes. - -

Shell - Software programs used to develop expert systems.

Slot - A description of an object in a frame. Slots may correspond to features such as name," "

deflinition or creator, or may represent a value.

Syntactic - Specifie the form or structure of symbol expressions.

(L tO-3 e ®r

• . . -. -.- -,,,-,. . . . . . .. . . . . . . . . . . .*'. . ,,.

.- %..-.



- . %If _, .%

Glossary

Tools for Knowledge Engineering - Programming systems that facilitate the proces, of building L

expert ;ystems. Iarticiflar emphasis is placed on generic task packages and very high-level bmiguages
for heuristic programming.

Truth Maintenance - The task of preserving consistent beliefs it, a re;soni,,g system., whose beliefs
change over timle.

0 .4 -

,. % *- ,

". I"* *,

., .,-

*..,- , ..
0

•-. ..,
G LO-4 ii,. .

,.. .,_:,;;,, -- -, ,.,.., -:,,.,,,. - .., ......... ,.....,........,..................... ,
-e "**"-, %* .,.,"P " ./ . ?,,Z,,r,' ,.'. .",..'',,,'. ' -,',,,,: '.; ."." ."-.",". ".-.-. ."-."- . .:., -"- .:. . . . . ..,



- - -- - - -. %

0
.%

ww.

%. .q %*

V

ABI/ inform American Business In formation
AFR Air Force Regulation
Al Artificial Intelligence
ART Automated Reasoning Tool
ATO Air Tactical Operations
ATP Acceptance Test Plan
ATR Automatic Target Recognition
BM/C:' Battle Management/Command Control and Communications
CBD Commerce Business Daily
CBTAO Cost Benefit of Tactical Air Operations
C1 Configuration Item
CM Configuration Management
CMIS Configuration Management System -

CMU Carnegie-Mellon University
COMPASS Central Office Maintenance Printout Analysis and Suggest Systeini
CPCI Computer Program Configuration Item
CPL Constraint Propagation Language
CPU Central Processing Unit
CSCI Computer Software Configuration Item
DARPA Defense Advanced Research Projects Agency r .

DART Duplex Army Radio/Radar Targeting
DATA Decision Aids for Target Aggregation
DBMS Data Base Management System ,.*.*

DEC Digital Equipment Corporation
DID Data Item Description
DLL Data Layout Language
DOD Department of Defense

DP Data Processing%
DPMA Data Processing Management Association M
DROLS Defense RDT&E On-Line System
D)5D) D~ecisionI Stipport, levelopnient. Syst-eiii
DIC Dl'lci )teec''htica:l hitforniaut Center
F( 'NI l-1ectronic IContri~si

IA101 Enbde I'tC)'lt't(omiptiter Systents

E~I A lvcttronDit I n(Itstries4 Asso)ciationI

ENVSl l',xlprt, Software Pricer 1r

l',SIAS lExperL System for Target Attack Sequencing
I~'l'lExpert. TIechnologies, Inc.

FIDlS Fault D~iagnosis and Hesolution System

F I3l, Frame lRepresentation ILan guage

11011 iligh Order Language

IB1M Intertiational Business Machines Corporation

IIIM FSG International Business Machines Federal Systems Group

ACR--I

%. * -- V - '4

J. %V %V



A cron vzns

INSPEC Information Services in Physics, Electrotechnology Computers and (ontrol
IR&D Internal Research and Development-
IRAD Internal Research and Development

ITACC Integrated Tactical Air Control Center

IV&V Independent Verification and Validation

JLC Joint Logistics Commanders
KAR Knowledge Acquisition Rules
KBS Knowledge Based System
KBSA Knowledge Based Software Acquisition
KEE Knowledge Engineering Environment
KES Knowledge Engineering System
LAS Lockheed Aircraft Service Company
LES Lockheed Expert System
LGC Lockheed-Georgia Company
MIT Massachusetts Institute of Technology l
NAS,\ National Aeronautics and Space Administration
NSF National Science Foundation
NTIS National Technical Information Service
OS Operating System
PDR Preliminary Design Review
PDS Problem Definition Statement
PGS(, PAR Government Systems Corporation
QA Quality Assurance
RAD(C Rome Air Development Center
R&D Research & Development
SA&F Software Architecture & Engineering, Inc.
SI)I Strategic Defense Initiative 4.

SFAS Sensitive Financial Analysis System
SPEA See and Project Enemy Activity
SQR System Quality Review
SSE Software Systems Engineering Directorate
STAMP System Testablility and Maintenance Program
TI Texas Instruments, Inc.
TMS Truth Maintenance System ?

UICP Unidentified Command Post

%w

ACR-2

co .0Z

Z.." -r % -

5,.,%

od~r,
X:~ 4*4 r-



Appendix A

Software Development Problems

This appendix isolates software related problems that surface in both conventional software devel-
opment and in artificial intelligence systems development. The following software categorization *Ai,, _
was extracted from a report issued by the Department of Defense (DOD) Joint Services Task Force
on Software Problems, Report of the DOD Task Force on Software Problems. One purpose of that
study was to identify conventional software problems associated with embedded computer software.

1. Life Cycle:

(a) Requirements;

(b) Management;

(c) Acquisition;

(d) Product Assurance; and

(e) Transition.

2. Environment:

(a) Disciplined Methods;

(b) Labor Intensive;

(c) Tools;

(d) Reinvention; and

(e) Capital Investment.

3. Software Product: 4
(a) Doesn't Meet the Need; R

(b) Software Metrics; N.

(c) Design Attributes; ". .

(d) Documentation; and

(e) Immutable Software.

4. People:

(a) Skills;

(b) Availability; and 0

(c) Incentive.

,""-.%
A-1

Ne, % %
%.4 Jo Z



Appe ,dix A Software Development Problems

A short definition of each category and subcategory is provided followed by tables of conventional
and Al systems problems that were identified in the following bibliographic sources:

1. Sources

(a) Acquisition and Support of Embedded Computer System Software, September, 1981.

(b) DOD Weapon Systems Software Management Study, June, 1975.

(c) DOD Weapon Systems Software Acquisition and Management Study, Volumes I and II, ".'.
May - June, 1975.

(I) Fitial Report of the Joint Logistics Commanders' Workshop on Post l)eployment Software
Support (PD)SS) for Mission Critical Computer Software, Volume II, June, 1975.

(e) Proceedings of the Joint Logistics Commanders Joint Policy Coordinating Group on
Computer Resource Management, November 1, 1981.

(f) Report of the DOD Task Force on Software Problems, Third Draft, July 15, 1982.

(g) Report of the USAF Scientific Advisory Board, December, 1983.

(h) Suggestions for DOD Management of Embedded Computer Software in an Environment
of Rapidly Moving Technology, March, 1982.

(i) A Practical Guide to Designing Expert Systems, Shalom M. Weiss and Casimir A. Ku-
likowski.

(j) A rtificial Intelligence, Patrick Henry Winston. " __

(k) Riiding E.rpcrt Systems, Frederick Hayes-Roth, Donald A. Waterman, and Douglas B.
Lenat.

(I) "Computers and Information Technology in the Year 2000 - A Projection", Stephen F.
Lun(istrom and Ronald Lilarsen, IEEE, September 1985.

(i) h'.rplrt Syste ns, Paul Harmon and David King.

(h) "Expert Systems: Where Are We And Where Do We Go From Here?", Randall Davis,
MIT Al Laboratory, June 1982.

(o) IEEE 1984 Workshop on Principles of Knowledge Based Systems, IEEE Computer Soci-
ety. S

(p) "On the Development of Commercial Expert Systems", Reid G. Smith, The AI Magazine,
Fall 1984.

(q) Rul,-Based Expert Systems, Bruce G. Buchanan and Edward H. Shortliffe.

(r) "Starting a Knowledge Engineering Project: A Step by Step Approach", Mike Freiling,
Jim Alexander, Steve Messick, Steve Rehfuss, and Sherri Shulman.

(s) lThc A I Business: The Commercial Uses of Artificial Intelligence, Patrick H. Winston
and Karen A. Prendergast.

(I ) I'lil, .. ,I ili,'il, n l eEll .l'n,'c" EXl,'ru ,',, S1,san J. Scow,,.

(ui) I'h, Handbook of Arlipiial Intelligence, Volumes 1-1l, Avron Barr and Edward A. Feigen-
batm.

A-2

Ir0



A.1 Life Cycle ,

A.1 Life Cycle

Life cycle refers to the relationship among activities of computer software development from its
inception to retirement. The section is divided into five major categories: Requirements, Manage-
ment, Acquisition, Product Assurance and Transition.

A.1.1 Requirements A

The requirements phase of the software life cycle consists of the analysis and definition of a systet -

as defined by the user. As such, communication between users, support agents and acquisition ...

agents is essential to the success of the final system. Oftentimes, the requirement docurrwnt does-

not accurately define the product; or perhaps uses ambiguous wording. Inadequate requirement
information results in costly schedule changes to hardware and software. For itemized problems
see tables A.1.6-1 and A.1.6-2.

A.1.2 Management

The management of software life cycle includes activities such as planning, monitoring of schedules

and budgets, assigning responsibilities, tracking software projects and effective plans for software
activities. For itemized problems see tables A.1.6-3 to A.1.6-5.

A.1.3 Acquisition %'

* % ,

Software acquisition is difficult to specify because the rules for acquiring software have hist,,rically .rV

been based on the rules for obtaining hardware. Some major aspects of acquisition are:

" Management of System Interfaces - Good interfaces must be defined to guarantee a -itooth . '

integration; 
J. -

* Project Status Reports - l)ocumentation for project status;

* I'utueuI.a~t.ou llequtreunents - )ocumentation where applicable:

* Software Change Control - Software must be carefully managed especially where changes -.

occoir;

" Reliance on Contractors - Several contractors are frequently responsible for managlig the

software process; and '-.'

* Design for the Complete Life Cycle - All resources needed: hardware, software, docunien' at ion,

tools, personnel. etc. for the life cycle should he clearly identified-

For itemized probleins ,%,c tables A. 1.6 6 and A. 1.6 7.

A 3 O

. .... . . .* .%..%.
% %, %t



*~~~I 
P

A.1.4 Prodizct Assurance

SII Produict Assitraiwic('!O!

Il, Ilee It I I I At Ii. V iiic..I%. Iriiililt!iIitiiic I I I e I Ir Ier a' .111 *tIIIII .1 it a.-I %A &I d .-Al.IIV".

V31n I II %VI 01 1 lt 41 "3. 1 ii " 11V t I 'l lc ll %I A IIIII tW % ille 1 it, te It'%, ' I I Il' VtIi litI itI- Wiec~eitIll

adlitat V resm'i rcvs focr I e-ct. plamnig aloip with eurgimi7.e iiuitinIIv i el wevi lhe niegtiireit It'll
agent , dt'velccpitiviii contiritor, U-'41 agetil mitlij4rt 1110-itilad tiser nre estiittil Fori It.ei.ed
p)roblemis set, t ales~ AAA; I S~and AAA 9.6

A-.5 Tratisitioii

Transition refers to the change in the software life cycle from one activity to another. Trwo examples
involve the more difficult transitions from exploratory research to engineering development and
from development to support (also known as maintenance). Problems occur because the transition
from exploratory research to engineering development is characterized by new and rapidly changing
technology, and contrarily, maintenance requires a stable technology base. For itemized problems
see tables A.I1.-~ 10 and A. 1.6- 11.

A-1.6 Life Cycle Problem Tables

'rhe following tables show the problems which surfaced in each of the Life Cycle categories.41

* .

N, %

%

% % %%



A.1.6 Life Cycle Problem Tables ,

Table A.1.6-1: Conventional Software Requirements

PROBLEM STATEMENT SOURCE(S)

1. Poor Communication Skills. f
2. Diverse interpretation of requirements. c d f
3. Requirements defined according to cost and schedule con- bc r

straints.
4. Inadequacy of English prose for software requirements. f 1 .h
5. Excessive detail in requirements allocation. b r
6. System design characteristics appear in requirements docu- f

mentation. --x
7. Software is severely impacted by requirement changes. a b c d e f g h

8. Poor cost estimation analysis. c d e f
9. Hardware changes made with little knowledge of software im- b F

plications.
10. Requirement changes are costly. a b c d f g
11. Lack of valid engineering data to define what is cost effective f

for support requirements.

12. A support agent is not selected until late in process. b f
13. No operational concept developed. b f
14. Concurrency of the configuration of the trainer system does f

not always correspond to that of the primary weapon sytem.
15. Protection of classified software. f
16. Security causes increased complexity due to the number of f

systems and levels of security required.
17. No-standard ySlteltts ust Iw able to interface with others. f

I?4 I',.qIirII'l,.I are not. courrete before development begins. 1) C .
l'.1. Ihu~tngrnwnt lbdgets and wlhdies the software projtct g

without a true ulderstadihlg of the reqluiremlents.

2 e. 'l'lre xit an iiidequate tnderstandihg of te prodict to b C g
1 developell.

21. Syst.et1s continue to grow in complexity. a b d e g

.,.

A-5

..... ... ,, .. . V.. V V.a. * %- .. . . ; .. ; . . .. .. , . , . . ., . ... i



A.1.6 Life Cycle Problem Tables

Table A. 1.6-2: Artificial Intelligence HIrquirementm 7
PROBLEM STATEMENT SOURtCE(S) . %

1. Requirements oriented methods and intu- r u e
itions learned in the development of other
types of software do not carry over well to

Sthe knowledge engineering task.
2. A major difficulty in the application of Arti- I

ficial Intelligence (Al) systems is in obtaining
a complete specification.

3. Problem Statements are inconsistent or in- k m 0 r S t u ".
complete in matching requirements to the 6-
n al product. %

4. Poor communication between engineers and t
experts.

5. Knowledge principles and problem-solving i m
techniques are difficult to translate into a
knowledge base to be used by an expert sys-
tem.r

6. The knowledge is often ill-specified because i n t u
the expert cannot always express exactly what ell
he knows about his domain.

7. When available at all, experts have little time i
at their disposal,

8. The knowledge acquisition phase is one of the i o U 4r

most difficult and time consuming phases of
expert system building.

9. Problem in determining the kind of knowledge i j k u
required for an Al system.

Overlapping Al References: 2(Management), 7(Design Attributes). -

h.-.

R -:- -

.' I p .e I
: ! :;:::0

C..-
e. .' '' '



A.1.6 Life Cycle Problem Tables

Table A.1.6-3" Conventional Software Maiagement,

PROBLEM STATEMENT SOUR'E(S)

1. Lack of skilled software program managers. b f g h

2. Air Force uses inexperienced, junior officers to direct pro- f
grans.

3. Misunderstanding of acquisition concepts. b f

4. Belief that hardware and software can be developed and sup- f
ported by different concerns without strong engineering in-
fluence.

5. Prototyping used to sell a system but does not achieve its f
goal of risk reduction.

6. Incompatibilities between State Department and DOD deci- c f
sions.

7. Lack of communication. b c f *

8. Problem with the transfer of technological issues and the clas- C f
sification of data.

9. No clear assignment of responsibility and authority given to f
those working for management.

10. Lack of useful data on projects making progress difficult to c f
measure.

11. Lack of historical metrics and models. b c d f
12. Vague requirements definitions for complex systems. c f

13. Lack of tracking tools and planning. c f

14. Need for thorough software Development Plan to check va- c f
lidity.

15. Lack of performance monitors and modeling tools. f g.

16. Management budgets and schedules without a true under- g
standing of the requirements.

17. Often unrealistic budgets are drawn up just to win a contract a b g
prolposal" ." .

18. Inaccuracies in software cost estimation models and tech- a b c d e g
niques.

19. Contractual budget commitment is often made before Pre- -
liminary Design Review(PDR) occurs.

20. Software is not reported properly in large system status re- b c -
ports. %,%

21. High risk software is not addressed in reports and/or reviews. b c g %

Continued on the following page "- "

0

A-7

%.
% % %,,..- L.-...-., ,: ..... ,,. .'......-.-:-- .',..,: ..- :..,. .. ... ,,...,..-:- .:.:-,.



S

A.1.6 Life Cycle Problem Tables %

Table A. 1.6-4: Conventional Software Management (Cont.)

PROBLEM STATEMENT SOURCE(S)

22. Software status reports are too detailed to provide useful in- 1 c g
formation or too costly to be prepared correctly.

23. Insufficient time for high level management to respond to b c g
potential problems indicated in status reports.

24. Good advice is sometimes ignored by program offices. a
25. Cost information is rarely correlated with technical informa- C

tion for management purposes.

26. Management needs more information provided to identify c
where DOD software costs are occurring.

27. A high turnover rate of military software management per- c
sonnel occurs irk many program offices.

28. Very little knowledge available to acquisition managers for e.

selecting the hardware, software, and firmware configuration
items of a system.

.9.

.' * -

N%

%

A-8 -

.. * % % %- . . % - - %

% %. V.%.%u %.., ~*** *



A.1. Life Cycle Problemrz Tables

Table A.1.6-5: Artificial Intelligence Management

1.Existing Al systems cover too narrow a range m o q s t u
of expertise.

2. Lack of sufficient funding of Al projects exists. r t

3. Lack of strong management to guide an Al
project through completion causes difficulties.., o

4. Do not know how to manage the transfer of p
progressive and evolutionary technology.0

5. Knowledge engineering is often considered by r
management to be a technology that is far too
difficult to even attempt.

6. There are difficulties in scaling from the cur- I
rent project sizes to large knowledge based
systems.

Overlapping Al References: I (Requirements), 3(Requirements), 1 (Acquisition), I (Product As-S
surance), 1(Disciplined Methods), 1(Metrics), 2(Metrics), 1(Design Attributes), 7(Design At-
tributes), 1(Skills), 1 (Availability).

%.

%*.** %* %



A.1.6 Lif Cycle Problem Tables <

Table A.1.6-6: Conventional Software Acquisition

PROBLEM STATEMENT SOURCE(S)

I. Many software contracts are inappropriate as they are de- f
signed for hardware.

2. Changing requirements are not controlled. f
3. Software development tools are not required deliverables. f
4. No funds for software tools or documentation. f
5. Software cannot be carefully tracked or measured. c f h
6. Documentation requirements are often starved for funds. f
7. l)oumentation is over-whelming in volume but marginal in f h

value.
8. lequirements and design changes are not managed well, if at b f

atll.
9. l)esign changes are rarely made with the complete life cycle a c f.f

in mind.
10. l)ecisions made with little consideration of cost over the life a d f

cycle.
11. Even when software is not a primary cost or deliverable, it c

can have a large impact on system costs and schedules.
12. Need to improve software acquisition management with more c

detail in early stages of development.

% %

A-- 10'

%' -'..
.e

A-j1o .,_,

..... .---.-.........- -...-.. ............................................ /-.... -.......-. .......-..... -... ' -S.'.'.i..-.-...',- .'.)..

-i *-~ ml s , n - o .:' *..* ,* .m.mmm m u m-mn m m m m mm*. Simm m* *- m m '... m



A.1.6 Life Cycle Problemj Tables .

Table A.1.6-7: Artificial Intelligence Acquisition

PROBLEM STATEMENT SO I llCI'(S)

1. The rapid prototyping method does not offer p
a clear guidance on how to produce a well-
engineered commercial product.

2. With rapid prototyping, the system is always p
in a state of flux.

3. A precise set of tools needed to solve a prob- p
lem cannot be identified before the implemen-
tation phase. -_

4. Representations at too specific or at too low o
a level yield problems in integration, mainte-
nance and extensibility.

Overlapping Al References: 3(Requirements), 4(Management), l(Disciplined Methods).

%

"]

• IA

.. %

L 11".A,'

, , %. %. .. .x x x . . . . :. . .-- -._ _ _- - - - -. -- -- , ,.. . ; : ;2& Z; " , ,



A.1.6 Life Cycle Problemi Tables

Table A. 1.6-8: Conventional Software Produict Asitrirtce

V. Lack of criteria to determine how much testing is necessary a r
at each stage of software development.

2. Tresting is often governed by the tinme and money available, a r
3. Test tools are not a real measure of a products assurance. c f*4.- 4

4. The testing of some requirements is extremely difficult to f
simulate.

5. Software test, planning does miot receive an adequtate sh~are4 of 11f. .%.

total resources.

6. Incomplete or vague functional specifications cause errors dis- a b f
covered only during testing.

7. Software testing is not always provided throughout the entire a c f % ~
program life cycle.

8. Independent Verification and Validation (IV&V) strategies f M
are costly.

9. Errors exist in software after deployment to the user com- d h 4

inand regardless of the testing effect. . -

10o. Trhere exists a high potential for a significant lapse in support b h
during early deployment stages. 0

11. 'resting effort requires a significant amount of money. b %~'*

A-- 124

% %..

% %4

% %44

%S



A.1.6 Life C~ycle Problemj Tables

Table A.1.6-9: Artificial Intelligence Product Assurance

PROBLEM STATEMENT SOURic-E(S)

1.There exists a lack of knowledge regarding o q t u
testing of AI systems.

2. AI systems have no independent means of k

checking whether their conclusions are reason-
able.

3. Experts should be evaluated as well as the sye- q
testis.

4. Acquisition organization and structure of I f
knowledge is a manual process with the re-
quirement or detailed quality assurance. '

Overlapping Al References: 5(Requirements), 6(Requirements), 6(Design Attributes), 7(Desigai
Attributes), 8(Design Attributes).

%~ %

A 1:1

V~f-

% %

% % % %S

le* -p.



- - - - - - ... T.'V- ~- - . .- ,. 4 t %.. ~ . . - .

-W or
.4 .T.,'

Table A.I.6-10: Conventional Software Transition " &

PROBLEM STATEMENT SOtLRCE(S)

1. Rapid changes in technology. a 1) d f

2. Post engineering data becomes obsolete very quickly. f

3. Microprocessors and firmware are forced under software or e f

hardware guidelines. .',"': .

4. Need to develop a unique policy for microprocessors anti f

firmware.
5. Need for flexibility to adapt to technological change. f

6. Inability to develop and validate system and tactical software f
requirements and evaluate doctrinal problems.

7. Insufficient acceptance testing performance on a regular basis c f

for automated systems.

8. Necessary to develop and support automation. f %

9. Need for a single, integrated set of procedures, guidelines, c f
and standards for development of automated systems.

10. Lack of identification and use of an effective procedure for b c f
system development. -% -%

II. Automated Systems have poorly defined function and inter- d f
face requirements specifications.

12. Automated Systems lack proper modularization, use f
machine-orientated languages, and are inadequately docu-
mented.

13. Most Research & Development (R&D) work is not aimed at f
a specific weapon system.

14. Rarely is the transition made from the useful techniques and f
tools of R&D to operational systems.

15. Post Deployment Software Support has to reorient its work a b g ,

force from traditional logistics and maintenance functions to
advanced technology support.

16. Lack of discipline in software development methodology, b c h

17. Delays in delivery of software has a large impact on system c

costs and schedules. S

18. Need to educate involved organizations before useful output c
is obtained. ,-

19. Need a swecilication or set of criteria to aid in the documnen- e

ratioti selection process.

.% .'y'

A-14

. . . . * . '. ,,' * ., .'.- . % ..' " ' " '' .--'. - . f



A.1.6 Life Cycle Problem Tables

Table A.1.6-11: Artificial Intelligence Transition

PROBLEM STATEMENT SOURCF,(S)

1. Expansion of technology in the next five years i s u
will be explosive.

2. Terminology is inconsistent in the Al world. k m
3. Systems only evolve gradually because it takes k

a good deal of experimentation to achieve high
performance.

4. Al systems require a continuous relationship
with an expert.

5. Eventually, as a result of Al systems, automa- m%
tion will occur and many jobs will disappear
or change radically.

6. No programs exist yet which can understand S
simple, mechanical causality.

7. Al systems are unable to recognize or deal k
with problems for which their own knowledge
is inapplicable.

8. Al methods must be augmented with conven- p
tional techniques to solve real problems.0

Overlapping Al References: 1 (Management), 4(Management), 1 (Acquisition), 2( Acquisition), ;--
3(Acquisition), 1 (Tools), 9(Design Attributes), 1 (Skills), 1 (Availability).

S-6

A-15.

V J %.. %41 .
04 % ... %.

. Q0

% %A% P
V,0



%

- .

A.2 Environment

A.2 Environment

The section on environment examines tools and methodologies involved in the development and

in-service support of computer software. Five major categories which have surfaced are described:

Disciplined Methods, Labor-intensive, Tools, Reinvention and Capital Investment.

A.2.1 Disciplined Methods
,..s'KeN

Disciplined methods refers to the use of adequate engineering discipline in software activities. Lwak
of software discipline varies from those who fail to apply the required dischplint. I. a stIiw'r r

problem, to those who fail to recognize the need for software discipline. The result is lack of
enforcement of good programming standards which includes effective use of structured programming

techniques, inefficient software configuration management, lack of baselining and documentation,
and an insufficient system engineering technique applied to a program. For itemized problems see
tables A.2.6-12 and A.2.6-13.

A.2.2 Labor Intensive

Since software is a labor-intensive technology, methods to improve the efficiency of people are a

continuous concern. One means to increase productivity is the automation of manual processes.

Anothter suggested means, is not only to reduce mechanical human activities, but to enhance

creative possibilities through automated systems. For itemized problems see tables A.2.6-14 and
A. 2.6 15.

' .% *.

A.2.3 Tools

Development and support tools are needed to improve productivity in design, coding, test, support %
and management. Due to the diversity and complexity of systems, emphasis is placed on tools and

procedures with wide-spread application. The needs for automated software design and support -

tools include uniform, portable, yet tailored tools with applications towards each phase of the l
software life cycle. Other desirable tools include: software documentation systems; configuration

management systems; data base management systems; management information systems; software ..- °

libraries; and comprehensive software de,,elopment, support and test tools (editors, code syntax
checkers, scenario generators, operational test data reduction software, etc.). For itemized problems ".
see tables A.2.6-16 and A.2.6-17.

A.2.4 Reinvention

lleiiii ,U refers lo the iability of software development to reuse functionally similar software
developed for other systems reulting in higher development costs. For itemized problems see tables

A.2.6- 18 and A.2.6-19.

A-16
0

%



IF.. A -AIX&

%
A.2. CaptalInvetmeit 4'

~A.2.5 Capital Investment

Capital investment is required to solve many existing software problems. Yet, software is given a
lower priority in funding by the DOD. The fund. allocated for capital investment and labor are

signficantly lower than the estimated need. For example, there is an unwillingness to mkake tile
essential capital investment required to provide better support environments with an ultimate goal .
of improving software engineering and eliminating reinvention. For itemized problems see tables
A.2.6-20 and A.2.6-21. f

A.2.6 Environment Problem Tables

The following tables show the problems which surfaced in each of the Environment categories.

%ft

"S

wp P d' -Y

%, 
%ftf%

N' ',.t



A.2.6 Environment Problem Tables

Table A.2,6-12: Conventional Software Disciplined Methods

PROBLEM STATEMENT SOURCE(S)

1. Retraining of individuals is costly so movement is not pro- f %

moted. %
2. Contractor's software tools rarely leave their shops when the f

product is delivered.

3. Lack of consistent, disciplined methods impact Embedded f
Computer Systems (ECS) because the software is developed .,,,,

by independent groups.

4. Need for better definitions of software terms, measures of c d h
software qualities, and methods of measuring them.

5. Differing policies exist among various Federal agencies and h
industry.

6. Lack of standardization of Data Item Descriptions. h
7. Within DOD, partial and inadequate standards exist. h S

8. Standards are rigid and lack the ability to be tailored. b h -

9. Lack of well-defined, consistent requirements causes Software ch "e
Quality Assurance difficulties.

10. No standard set of software acceptance criteria within DOD. b c h

It. Government standards do not recognize that differences in h
program size should influence the decision to apply standards.

12. Standards address too much detail disregarding the end prod- h""

ict objectives. -

%

4,. .

% %

P .. '.,

A -I -l - -?_ .I

uP w r - - - --%-%" "%-%'% .,,%'- "%% ' "% % " ",,'° . "'% % °. % % " ".". . % % . " - " - % - " -- -- 4.-



A.2.6 Environment Probleum Tables J. A f

Table A.2.6-13: Artificial Intelligence Disciplined Methods

PROBLEM STATEMENT SOU RCE(S) .

1.Methodologies for developing expert systems r
by extracting, representing, and manipulating
an expert's knowledge have been slow in comn-
ing.__ _ _ _ _ _ _ _ _ _ _ _ _

Overlapping Al References: 2(Tiransition), 1 (Metrics), 2(Metrics).

r.

'a %a



A.2.6 Environment Problem Tables

% %,

Table A.2.6-14: Conventional Software Labor Intensive

PROBLEM STATEMENT SOURCE(S)

I.Inefficient use of people in software development. f

2. Software is a labor-intensive technology. frg
3. Inadequate information support for tracking and control. g

VAp

.6%N

0

%*a %

%7 1P ~
_N VV2.Piz ee,- 16, Y. & o



A.2.6 Environment Problem Tables %
%IF 0%e

Table A.2.6-15: Artificial Intelligence Labor Intensive

PROBLEM STATEMENT SOURCE(S)

1.Acquisition, organization and structuring of I
knowledge is a manual process.

Overlapping AI References: 1(Skills), I1(Availability).

.-w

V( V



A.2.6 Environment Problem Tables

Table A.2.6-16: Conventional Software Tools Ib

PROBLEM STATEMENT SOURCE(S)

1. Contractor is often forced to use a government tool which f
requires use of an unfamiliar system.

2. Need for standardization of high order programming Ian- f
guages.

3. Deviations in language definition and implementation forbids f . Il
transportability of High Order Language (HOL) programs. - '

4. Lack of consistent standards for software causes problems in f h
acquisition and development.

5. Effective and efficient maintenance is difficult. f
6. Software is often re-engineered. a f g
7. Tools are unavailable, unpublicized, difficult to understand a c f g h

or use, or inefficient.

8. Inconsistent computer support of software development. c f
9.Difficulties in transitioning generic (non-weapon) specific r

software tools to weapon system programs.-

10. Non-modular tools are: f .

" expensive;
a." untimely;%

" difficult to maintain; aa

* inflexible to change;

" uinreliable; and

" non-responsive to user requirements.

12, l6-4ou rre (Titrau 1d oilv allow a iiiiniinal numnber of tools f%
to) he' develop~ed. -.l -a %.

1:1. P'oor docutnentation of tools results in a lower level of quality f

r(esidtq. of I lie systerii.
14. Noii-iforritiity awliong tools. f
15. Strive for langtiage inidependence rather than support for a f

s eiftic l;,ii glage. %0.

11; sioll apply i'xistlung tools. C g

A-22

Noa
r W %

% ~~ % %%
JW - e v .' , .:~'* r.J '" 'r~ "- .' .. r -%% % % % % %1 % %



A.2.6 Environment Problemn Tables %.

Table A.2.6- 17: Artificial Intelligence Tools

PROBLEM STATEMENT SOURCE(S) r '

1. Cost performance standards are not fully un- m
derstood yet.

4L ..

we

%

%' %.

%

% %-M d. P *.

w.-

'S.

% % %
* *



A.2.6 Environment Problem Tables

Table A.2.6-18: Conventional Software Reinvention

PROBLEM STATEMENT SOURCE(S). ,.

I. Designs and implementations of previous systems are not cap- a b c d e f g h
tured mid reused in succeeding systems.

2. A rigorous interface standard must be provided for all candi- f
date reusable components.

3. A library of reusable components must evolve for use by all f
development activities.

4. An index of reusable components must be included. b f
5. A rigorous design standard must be provided for any major e f or

software system or subsystem to be implemented as a skele-
ton.

6. A library of subsystem or system skeletons must be provided. f
7. A set of supporting tools must be implemented. f
8. Most application-specific software is developed new for each g

application.

0

* .. '

*k'% %%

.. ,,..-

A-24

C. .1 .%

C-. I"Vr



-- 67,77-----3-7-

A.2.6 Environment Problem Tables

Table A.2.6-19: Artificial Intelligence Reinvention

PROBLEM STATEMENT S) l ~S

Overlapping AI References: 2(Acquisition), 4(7ransition), 6(Transition), 8(Transitioi).

A-25p

.0.



A.2.6 Environnient Problein Tables

Table A 2.6--20: Conventional Software Capital lnvestiicuit-

PROBLEM STATEMENT sol RtcI(S)
NO4

t-Many D)OD Computer Support facilities are overloaded and r
use aging equipment.

2. Software is developed on target hardware which is not. de- f
signed to support such development.

3. Lack of sufficient time is spent on Independent Research and f
Development.

4. Schedule slips occur resulting in cost and resource consump- b "

tion.
5. Major software costs in development, operation, and mainte- c

nance phases.

0

A-2 %-

r I-P P

%-

%0

% 1% 'W.*-'P . *- '.
% % % % % % %

% %



A.2.6 Environment Pro blemi Tables

.16 .%*J"%%

1%.

Table A .2.6-2 1: Artificial Intelligenice Capital I nvesttineit

PROBLEM STATEMENT SOURCE(S)

99. None Noted I
Overlapping Al References: 2(ManagemnentJ.

A--27 -

% %



A.3 SRoftware Product ,

A.3 Software Product

The software product consists of the operational embedded computer software as well as the mate-

rials necessary for life cycle support - requirement and design specifications, source code, test data, 1%

system generation data, unique support tools etc. The following five categories briefly describe

some subdivisions within the Software Product: Doesn't Meet the Need; Software Metrics; Design

Attributes; Documentation and Immutable Software,

A.3.1 Doesn't Meet the Need

The section refers to the failure of the deployed systemi to mect. the tmer's icd t )uie s.ti-h situation *

occurs when requirements are either stated or implemented incorrectly which results in changes to

correct the problems. For itemized problems see tables A.3.6-22 and A.3.6-23. -

A.3.2 Software Metrics

Software metrics are aimed at providing analytic models and empirical data on software to aid in

the choice of software engineering techniques, estimate development resources, and evaluate future

costs. For itemized problems see tables A.3.6-24 and A.3.6-25.

A.3.3 Design Attributes 0,

The Design provides an acceptable programming solution to the problems stipulated in the Require-

ments Specification. As such, the design specification contains a solutinn to the user's problem. '

For itemized problems see tables A.3.6-26 to A.3.6-28.

A.3.4 Documentation -. ).

Documentation should convey information on or about the computer system developed. Both

managerial and technical work should be included as well as transitional documentation helpful in

bridging the gap between phases. Also, documentation serves as a baseline from which changes
or upgrades a-e made. Although documentation is an important aspect in the development of .

computer systems, the resources allocated do not reflect the actual costs necessary to produce

adequate documentat:,n. For itemized problems see tables A.3.6-29 and A.3.6-30. %

A.3.5 Immutable Software .
4.o. ="

This section refers to software packages that are system unique, non-portable and non-reusable.

Software developed for embedded computer systems is generally tailored to the specific application
amid hardware omviroittienit, without regard for reusability. Conse(quently, acquisition agencies are

forced to pay over and over again for software that has essentially been written elsewhere. For
itemized probleni, see tables A.3.6-31 and A.3.6-32.

A-28 %.o %' a-w-.--' -

% . ....% , % .% % ..

-%-,., _

' ,4' 'Sw ... , .. ,- Z#".t , ." " !"."d",I . . . -d .". .4r o . .4-- . o . .. #.,



A.3.6 ~ ~ ~ ~ ~ ~~~F SotaePoutPrbe al. -

~A.3.6 Software Product Problem Tables

The following tables show the problems which surfaced in each of the Software Product categories.

A-29

? % %

.0 o % % % %% % % %% %% .....% % %i



- - -- ~ .-- '-,. -- ,.q

A.3.6 Software Product Problemn Tables

Table A.3.6-22: Conventional Software Doesn't Meet the Need

PROBLEM STATEMENT SOURCE(S)

I. Software is expected to solve hardware problems. b f
2. Software is difficult to develop and support, understand corn- a b c d e f g 1h

pletely. and measure its performance fairly.
3. lIadequate communication in system. 4 f,
4. Anibiguoiis, unclear, and incomplete requirement.s definit.io.. I1 4" f ..

5. Necetsarv to define comnpletion ad perrorniatie crik-rid. f

e

6. I :cic~pat ilIIt ic ae eneteupet t. diIeeutlels
of maintenance.

%;

V• .... .

..- '..

.... '.. J. .A %

., ...',

,,---.

-i a ; "'a'

-"aA-30.

.. ,....- ,.... . , .. .-.. ... ,. ...,-.. ... ....... .. .... , .;. .. , ... ., -..-. , ... .- - .-. , .. ,., ,.,... , .. -. , ,..-,.-, . _,,
-" 'J . r . . " . , . . " . ". . '. . . . . . . . . .. , . , . .. . .,. . .. . a ' .



0

A.3.6 Software Product Problem Tables %

Table A.3.6-23: Artificial Intelligence Doesn't Meet the Need

PROBLEM STATEMENT SOURCE(S)

1. Myths regarding human and computer intelli- j
gence may mislead the user in terms of system
capabilities. __

Overlapping Al References: 6(Requirements), 9(Requirements), l(Product Assurance).

16

.O %- _

-. '. '. .

. . %a,

. ". . ,",

%' e

%

% A.

A 31

-C. - .!7_PFe. -- "j

.-.A ,:-'.,



N% e %

A.3.6 Software Product Problem Tables

Table A.3.6-24: Conventional Software Metrics I.

PROBLEM STATEMENT SOURCE(S)

1.Lack of good analytical methods and hard empirical data a b c d e f
needed to estimate future costs and mission impacts. Io

2. No validated models of life cycle costs and productivities in a b c e f
development and support.

3. Unexpected changes in hardwired software during software f
project life cycle.

4. Undecided as to whether or not Configuration Item ((.') or e f
Computer Program Configuration Item (CPCI) standards
should be applied to firmware.

5. Need t~o separate and conduct measurement of creativity and f
implemnentation.

6. Contractors are not requested to report detailed software a
(data on any aspect of software acquisition or support.

7. Manager.- need regularly scheduled updates to show cost and d e
schedule states.

A-32-

%~ %S
J. .0 .1

% % %N. % zk% %% %



% . .

A.3.6 Software Product Problemj Tables o

Table A.3.6-25: Artificial Intelligence Metrics

PROBLEM STATEMENT SOIURCE'F(S)

1.Evaluation of an Al project is difficult. q uON
2. There exists no true scale of measure to tell q ~I

how high a rating that a system can realisti-
cally achieve.

Overlapping Al References: 4(Management), 1 (Acquisition), 2(Acquistion).-

V-~ I-.

%\ % %I

WP I...-

I.-

-~ V.
%. VV' 1 0

n S

N0



II N

A.3.6 Software Product Problem Tables
%

Table A.3.6 -26: Conventional Software Design Attributes

PROBLEM STATEMENT SOLII.UES)

1. Need a more focused body of literature for software design a f %
as it relates to system computational architecture and per-
formance. o fio

2. Lack of an understanding of both software design implications b
and hardware architecture. 

f o- wo

3. Need for safety features to prevent loss of security informa- f
tion.

4. Design requirements do not exist to ensure the best user sys- b f
tern interface. '

5. Misunderstandings occur between software and hardware en- f-.0- "e
gineers. S

6. Software engineers develop misconceptions of how hardware b f g,%
performs.

7. Inadequately designed requirements. b c f g . %it

8. Incorrect assumptions made by software engineers. f g --
9. Software often lacks modularity resulting in memory waste. b f

10. Improper selection of a software language to be used. b f %
11. Programming style contributes to faulty design. b f
12. Poor documentation and conformity to a standard. a f
13. Software is often written to fit the outdated hardware system a f

used. k-

14. Too ambiguous in defining objectives. f
15. Monolithic development leads to cost overruns and schedule f ",,".-

delays.
16. The software life cycle is not really considered when design f

decisions are made.
17. 1 nclear understanding of design options. c g
18. It is often the case that in order to include a new capability a b c d e f g h

in a system a major software redesign is required.
19. Premature programming begins causing long-term difticul- b

ties. A
20. Bottom-up design is implemented rather than top-down. b
21. Long. costly design phase. b
Continued on the following page

%% % %- ,

A 34 e.'e:!e. e
5tp.%.9

- ~-v V
7 , d da-. rL v L~. _w... m,,-- J" ,," <_ .. .,,. m --.- ,,, j.,- '. " , * 1 -- .". J .55 *%* . J* *J ,, * .P % ',. % '.. .. _ ...- o. ..

*55 ,5.',_-*:.:.;t.P. 5' 
. .

-1-,'1-,' .-. *.' +-"--- -"% _."-"-...:-: -,-,'-.'-',-

,it i1, , + t f i . ,+ f _ *' - l ~ l l l I i i I l I l l l



961- W. -1kL -

A.3.6 Software Product Probleui Tab~les

Table A.3.6-27: Conventional Software Design Attributes (Cont.) -.

PROBLEM STATEMENT SOIJRCK(S)

22. Lack of software transferability from one system to another. b c d

23. Software does not have the same degree of visibility or atten- c
tion as hardware does.

24. The major elements of weapons system software are often not c
integral with the operational components.

25. Weapons system software does not fit previously defined pro- c
curement categories. % %

26. Need to allocate software resources differently than hardware C
portions of a system program.

27. Known risk reduction techniques need to be employed for c
software.

28. Need simplicity of interfaces among Cl's and CPCI's. e

J'. .. ,

0,
" %- %--,

.",;,

.. % V%

-. %. -.e

'j . - '*

-p.-.*.-.'

• .,,.- S

A-35 -'.



- % .'%

A.3.6 Software Product Problem Tables .
r 

,, .4-.'.%

%-,

Table A.3.6-28: Artificial Intelligence Design Attributes -b

PROBLEM STATEMENT SOURCE(S)
.0%.-.

S 1. Problems arise in making associative data -

bases (which require functions for adding, re-
moving and fetching data items) efficient and
meaningful.

2. Al svstens are not noted for their speed. , s t

3. In Al programs, data structures tend to be -.

large and complex.
4 Improving and defining descriptions often mo- J

bilizes powerful constraints that force conclu- .,

sions directly without sophisticated problem
solving and reasoning mechanisms. ' .

5. Simple search techniques cannot find optimal "

paths and may be inefficient.

6. Difficulties arise when the expert attempts to p
map his explanations directly into the formal- -.

7. There often exists voluminous amounts of in- s t u
formation in the definition phase of an expert
system. 

-.

8. Experts often trim their knowledge to fit the "

knowledge structure more conveniently. %

9. Knowledge bases exist but little help is avail- i k
able for initial design decisions.

10. Because knowledge systems are not hierarchi- o
cal, they are difficult to decompose.

Overlapping Al References: 3(Requirements), 4(Requirements), 5(Requirements), 6(Re- %

quirements), 9(Requirements), 4(Management), 1(Acquisition), 3(Acquisition), 2(Transition),
4(Transition), 6(Transition), 8(Transition), 1 (Incentives). S

* ." ..

A-3

46, ', .

%% %

%~ " %'% % '.

AA-%

V ° -, ,

'*"" "20



A.3.6 Software Product Problem Tables

.% %

TableA.3.-29:Convntioal Sftwae Doumenatio

PROBLE STATEENT SORCE(S

3. Thee exitablnitees as.69 onveatiocnSotareonDocumen-ation

4. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5 Error ocu nte culpoucino*ocmns

2. Dhr xssltl rn ocumentation isotndlediuing isy reasucedesg a b d f

3. Therequessncnstnesatowt documentation isssrsutn n ako c- a d f
petear c isoy

4. erormoccur infeaulpction ope docum nts.atar af

8. Therenexist ittl for owr documentation, nereaest fdsig ab d

6. INoadae documentation eDits rteultingiin aof corn- a

p"t project histoury.s

7. Reuieentofn inform ainsoe etadfrar

8.I"otatngfrsfwr documentation, theeeeistpro-.

11Sem intenowing what toeask for. umnttin

92. Noe sandardn dcmneato Daagem/esitieo's(DID's) a

10. F acsificulbtwith roueard mto douetaton

15 systlem complexninwhty coprse a adaeitnievr

*~i ocumaeintativerpliap.on

% % %% % %% S.

It. Sytci iefaii %is apri oumnain



-T-7.

A .3.6 Soft waje Pr-oduct Probkim Tables

Table A .3.6 -30: Artificial Int-eligence I )tcutetj,j'0I W~

PROI(BLEM STIATEMENTI OlRKS

99. None NotedI

V-..

%. %

% %-

- I



% P% d-

A.3.6 Software Product Problem Tables '"

Table A.3.6-31: Conventional Software Immutable Software .

PROBLEM STATEMENT SOURCE(S)

I. No formal approach exists to exploit the potential of reactions f
to adversary threats within systems.

2. No emphasis on systems to meet changes in enemy defensive f
techniques.

3. Designers do not optimize available computer resources. b c F

4. Lack of standard hardware used. f
5. Inadequate transfer of information regarding existing soft- f

ware resources.

6. Specifications are not written in a common language or for- bf V, TIP

mat.
7. Software is not documented to be reused. f
8. Lack of software development standards exist. b f

A

V* .- .-.

% % %" V%...,.-



70

A.3.6 Software Product Problem Tables

Table A.3.6-32: Artificial Intelligence Immiuatable Sftware

PROBLEM STATEMENT SOURCE(S) k % P %.-P

99 None Noted -

Overlapping Al References: 4(Management), l(Acquisition) "'

A-40

- z 1, ,

- '' "%

.. ). .

S%# ..d"

, U a* .

% .- .i..

"° . = .°°
.

-.:. ,
... .-.S

-p.

' .* ~~ ***--.'..'* % ** ,. ' *.* . . % %



o - - _ * .. *I - a, " - - -- .

A.4 People

A.4 People

A shortage of skilled system engineers, .,ftware engineers awl maJa;Lgirs hm,; s rlf;il. as a reidil. %
of the rapid spread of digital technology. Consequently, three problematic areas have manifested
themselves in professional skills, professional availability, and professional incentive which are ex- .- ;.'- "?
amined as separate categories in this section.

A.4.1 Skills

One of the most highly valued and respected skills of an engineer is the ability to properly prepare
software requirements, designs, and to provide adequate support for future modifications to systems.
For itemized problems see tables A.4.4-33 and A.4.4-34.

A.4.2 Availability

The availability of qualified professionals for software development does not meet the need. For
itemized problems see tables A.4.4-35 and A.4.4-36. .

A.4.3 incentive ...

Incentive refers to the idea that the software engineering career field should recognize and encourage
skilled professionals through incentives such as better working conditions, educational opportuni -

ties, promotions and salary increases. Along with this concept is the idea that professionals shoild
be trained in managerial and technical skills. For itemized problems see tables A.4.4-37 and AA4
38.

A.4.4 People Problem Tables

The following tables show the problems which surfaced in each of the People categories.

-...-.

%

% %,, %

A-4 1 ""*"' i
O0

...................................................................



A.4.4 People Problem Tables

Table A.4.4-33: Conventional Software Skills -

I'llOBLEMt STATEME~NT SOUIRV(s) %.W

I.Shortage of skilled systems eirgieerq, software engineers, nn1(1 f g
managers.

2 Individuals must require a broad range of knowledge in tiany
areas.

3. Communication techniques are often ineffective. f
4. Managers often lack technical knowledge. b f
5. No formal instruction adequate to develop needed skills. f
6. A few scarce experts must guide an entire software project. d g- . IV

0.

..--..,

a %

..- 'aa,~

-rV

-,~~~~. * , .. 1. *

. *

. - Illi

a-- ..*'1

%. % %%% %

%~ ", % -

I-V~~~~'.' %V,.11% SA 5

'a...-.z+
.--'-.:E

-a' -,

A-42 %.5

* .- ,.
'.''.V . .' . , ,' "- "- - " "- ', " "- "'- 

"+  
." "- " " "- "- ." .- " .. '"-% +,, ;+- ." ,," -"" .'-- +'. . - " ""- ',. ,, - " : " 

- .  
- " .+'' '." """" '+" " "" -'

r. .-+ _.- ;.-....:. ..-.... ,-.; .,-.. .....-.. , .. ::,, -. ; .,.:..:% ... ,-% X% ,; -.-. -¢ '.., +, ., .. :..-......



VV17AJF.* Jq-u 7.--r6 --~- - - - - - - -.-- T

*# % %.

F~ % %

%%

0

A.4.4 People Problemi Tables

N#

Table A.4.4-34: Artificial Intelligence Skills29

PROBLEM STATEMENTSOlll()

Overlapping Al References: 4 (Requirements), 6(Requirements), 3( Managemient), I (Prod uct
Assurance), I1(Availability). v4

eA %

A-43.

*4-' .- -

%~~- 'r%
%% % %

1. -..

N% Z Z



A.4.4 People Problezi Tables

Table A.4.4-35: Conventional Software Availability .b -.

PROBLEM STATEMENT SOURCE(S)

1. Greater demand for engineers and computer scientists than a f
individuals actually exist.

2. Number of people actually needed on a software project is f
not always clear.

3. Lack of experienced technical personnel within the Navy. f

1-4. Severe personnel shortage. f g

% %
.5%."..J5

-- %

,-' .... I:*

c- ~*.5-:

%"%

D , .-0

• • . ,.-,,S.. .-

-i ' '.'. ," .- "." ." 4', . s .' ." .' -. ... .- -. -. .", -' .° . , .% -. .- % ' . - - -
, -.%.", ,-.,_'.'._ _"-.', -.,'-.'- '-.'-/ .. .- ... , -"- -".-:, ", "" "- "- "" '- - -"-', '.-,",• " : "," ",". ,

'i ' ",e 
' " r " "

-- =" - - - - ' ' I '".. . ... . i 5" .. .



0
A.4.4 People Probeiui Tables e,.0

Table A.4.4-36: Artificial Intelligence Availability \ ','

PROBLEM STATEMENT SOURCE(S) r

1. There only exists a limited number of engi- i k o p s t u

neers in Al software development.

Overlapping Al References: 5(Requirements), 7(Requirements), 1(Skills).

.. W. % 

.

A .1.

% %' %

Z% %% %% %
. -  

-e

A~



A.4.4 People Problem Tables

Table A.4.4-37: Conventional Software Incentive

PROBLEM STATEMENT SOURCE(S)

1.Sellers mnarket exists; high rate of turnover. f
2. Excellent technical people are promoted out of their fields f

into management positions.
3. Lack of reward for excellence.f
4. Industry outbids the Government for desirable candidates. a f
5. Standard three year tour of duty policy exists for Air Force a

officers.

4r

.5 or

5~%-

N.

%% %

N .01V



.', %. ..
,,p,

A.4.4 People Problein Tables ",'. '

Table A.4.4-38: Artificial Intelligence Incentive

PROBLEM STATEM ENT SOul w{('E(S ) .., -,

,0

1. To some individuals, the development of Al i %

systems is perceived as a direct threat to their %

own jobs and security.

2. No existing non-industrial envi- s
ronments where young researchers can work
for five or 10 years with good equipment. -" .

" "

Overlapping Al References: l(Transition). :

55%

J.

%

F-'

"I' -Il

P. ? 5-2

i . • |

5,, , .

* ,"115



: -*. -.. , 
•  

... .J d .IwJ j. , ,_. * ,_ p_. P _ I, . .. r -i j . . . ' , .. ,- .-:- . r, -.:. - - - .- r.

,% %.

Appendix B C~

Questionnaire

ARTIFICIAL INTELLIGENCE SOFTWARE DEVELOPMENT

CASE STUDY QUESTIONNAIRE

The attached questionnaire has been sent to you by the Software Systems Engineering Directorate
(SSE) of Sanders Associates Inc., a large defense electronics firm located in southern New liamp- ,

shire. SSE provides software support to the users of Sanders computing facilities and undertakes a
broad spectrum of software engineering projects.

One such project requires SSE, under contract to Rome Air Development Center', to perform a 0
study on the acquisition, management, and control of Al1 software. While the Department of Defense
has established numerous standards, policies, and guidelines for the acquisition and developmntt :~;.:
of many types of conventional software, no such information exists for Al software. Tile primary ~
purpose of this study is to postulate a model for the development of Al software which could%
subsequently be used to devise associated policy, standards, and guidelines. One way we propose to
address our contract requirements, is to perform a number of case studies on AlI system development.0
In this way, we can attempt to ferret out common methodologies and pay particular attention to
those techniques that are considered to be successful. Consequently, the objective of Lte attached .
questionnaire is to obtain data from sources active in the Al arena to support the development of ~
a viable model.

The questionnaire is divided into four parts. The first part provides an introduction to Lte overall
*questionnaire by discussing the concept of a software development model. One model typically Fr

used by the Department of Defense is presented pictorially and discussed briefly. The second part
solicits information of a background nature that may be used to weigh, at least in a qualitative
sense, responses to the questions in the remaining two parts. The third part is devoted to technical
issues regarding the overall construction and support of the system. This part is further divided

* into five sections. The first section contains general questions pertinent to modeling Al software
development. The remaining four sections parallel, in a broad sense, major activities associated -~
with conventional software development and field support that, we assume, have counterparts in) Al I **.

software development. Finally, the fourth part contains miscellaneous questions whose placement '-

in one of the sections of Part IIl would have been inappropriately narrow.

It is intended that the response to the questionnaire be devoted to experiences encountered with % V

one Al system. If you've had experience with more than one system, perhaps you could choose the
one that you think best describes the Al software development process. We suspect that when you
review the questionnaire you will find that many questions can be answered quite briefly while others e

will require more lengthy responses. In order to reduce the amount of time you might spend inl

Contract No. F30002-86-C-0254, Technical Contact: Richard Evans, 315-330-3528

B-I

%0 .-.% -. ..- %

mA hAppendix

.5. ~ 'Questionnaire



-. 7 7 MV -: P :_ .. - .

Appendix B Questionnaire

responding to the more demanding questions, you may attach or reference available documentation
where appropriate. We would appreciate any references be as specific as possible.

We greatly appreciate your important input to this effort and will gladly acknowledge your contri-%
bution in our Final Report. Furthermore, we will be happy to share any nonconfidential information 4%
that we collect from other sources.

If you have any questions or comments concerning this questionnaire, please re'el free to contact its
as indicated below. 

'-.'

Again, thank yoti for your cooperation. 
-*-

Sandy King
Sr. Software Engineer
603-885-9242

Larry Fry
Study Director ~
603-885-9208%

Sanders Associates %
Software Systems Engineering
MER24-1283 

--

95 Canal Street 
n**

Nashua, NH 03061

-F

B-2

-V -V -- -V -V -V -V 1, -N N. n ' ' ~ ~ ' ?-

-n-~v %n-y en rn1? *0 .0 P 'r X 0e 0 '-0e0n, %



- % "0d
I

Appendix B Questionnaize

PART I: INTRODUCTION
'b

Systems developed for the Department of Defense (DOD) are becoming increasingly complex, .
requiring more time and a larger budget to complete. From a historical standpoint, DOI) experience .
indicates a number of cases where the acquisition of software has exceeded the predetermined cost
and schedule. To assure a higher success rate in acquiring systems, the DOD has set several ,
objectives. Principle objectives among them are that the contracted system:

h, * satisfy the needs defined by the DOD, and

" be developed within the allocated budget and schedule.

Consequently, the DOD has mandated that contractors adhere to a methodical engineering ap-
proach in order to provide visibility and control over the development process.

The engineering approach mandated by the DOD requires various levels of system and software
definition to occur over time. At the completion of each level of definition the products (i.e.
documentation or code) associated with that level are frozen in a state such that any future changes 7
must be treated in a formal manner. These baselines, as the DOD calls them, consist of functional,
allocated, and product baselines (see Figure 1). The functional baseline defines requirements for
the overall system. The allocated baseline freezes software requirements and the product baseline .

reflects the "as built" design. A formal review, attended by representatives of the government and
the contractor, is the vehicle for ascertaining readiness for establishing a baseline. Once established, *.. %
these baselines are under government control and any changes thereto must be agreed to by the
government prior to implementation. Representative of the controlled baseline entity is a document -.o
in which information appropriate to the baseline is recorded.

In addition to the government controlled baselines, the most recently issued DOD software de- %If
velopient standard, DOD-STD-2167, also requires that the developer, through the ,Ici'clopin'nii a
configuration, control the design and the code as it evolves. Inherent in this stipulation is the -

requirement to conduct numerous internal reviews which are intended to act as checkpoints for
determining development progress.

Because DOD systems exist in a constantly changing environment, planning and designing for -,
change is a high priority requirement within the DOD. Standards such as DOD-STD-2167 address ...
this requirement by stipulating analysis, design, and coding standards to be adhered to by contrac-
tors. These standards are aimed at producing software that, when fielded, can be easily maintained
and modified.

Because of its research oriented nature, the development of Al software has not reached I he mat urit . -y

of process/product standardization that conventional software has achieved. lie DOI) recognizes
the importance and value of Al software and is concerned that its development be managed and S
controlled in a manner which will prov le visibility into its development. From the perspective of
the DOD, the desire to acquire a high quality, maintainable product applies equally to AI software .*.-

as it does to conventional software.

With this background in mind, the questionnaire is oriented towards obtaining data that will "-
highlight the activities involved in Al software development, the approach taken, and, just as ira-
portantly, the management visibility and contr3l over the product as it evolves. Although tile

B-3 %

.,.. ,,., ... , .. ., .-,,- .., ..,,... .. , . . ... . . ..

40...- % ,.



N

Appendix B Questionnaire

-ib

Baselines: Functional Bmelina

AlIocated Baseine

Dovelopmrnetal Conligurstion

Product Bmeline

Reviews: Requiroiwnts Design DesignTet aCugrko

ReviewAudits

Phases: SoftwmR e q u i r e m e n t s ' , ,' ' " .
Analysi Preliminary ,...

Design De-k '. %

Products: T
]1 (*tl lit llsoft""

O, tu~an Taking Peformantce """-"%

Dl~~ell.m . ., a

s~r.,., s. m...rJ*

LI II II"

Dewelpti.. ...f,..h u.,tL° J Li ,

c i-7'

Figure B-1: Software Development Cycle
.. .. .-.

%, .. .

d. d-- --F-- .,.

. -.% 55%



Appendix B Questionnaire

process of Al software development may vary significantly from the process presented in conven-
tional software development models, the need for managerial insight must be satisfied.- For instance,
systems which take three to four years to develop must be measurable in ternis of progress anid .

expectations. To this end, we hope the questions will provide the data to develop mmodels wichi
accurately represent the technological and management issues involved in Al software developineit.

VU

J,.UI.
% % %.- -

r.
U.', NO--U .- e ,2 -jI-A-cA-



a ,b -. _ , .. L J .. . .. L , • . - . -.- .. .. -....-
,./ ...

0

Appendix B Questionnaire

PART If: BACKGROUND -

The purpose of this part is to identify basic introductory information about the subject system. -

In addition, certain information is requested to help put in proper perspective the responses to

engineering and management related questions contained in Part Ill of this questionnaire. / ,- -

Bi. Please identify the name of the system to which the responses to this questionnaire are .

applicable. Briefly describe the purpose and nature of the system and how someone nmy use the

system to solve problems relevant to the system purpose.

B2. Was the source(s) of funding for the project internal, contractual, or a grant? If other, please%

specify.

B3. Was this the first Al project that your company was involved in? If not, how tmay systems"
did the company develop prior to this one?

B4. How many engineers were assigned to the project? Of these, how many had Al development
experience prior to this project? Ile

B5. How long did it take to develop the system (man-months) from problem definition to first
prototype? flow much longer (after the first prototype) did it take to field the system? Was the 0
schedule predefined either by management, the customer or the amount of funding allocated for
the entire project? %

B6. How many engineers assigned to the project had prior experience in the development of '
conventional software for the Department of Defense? Were military standards dictated on any ,
of these projects? To what extent would you say that military standards, or any other standards 0.

governing the development of conventional software (please identify), influenced the development
of the Al system?

B7. The success of a system can be measured by many criteria. Some criteria may be:

" demonstrating the feasibility of a new technology,

* overall user satisfaction,

* significant productivity gains

0
To what degree do you consider the system a success for each of the above criteria? For those
criteria for which you weren't successful, is there something you would do differently in your next
endeavor to improve your overall success? If so, what would that be? Are there any other criteria a-- .-
against which you would measure the success of the system? If so, what are they and how did your
system fare against these criteria?

•~~~ %. '
.- %erp..-.

N oi-l " ,-. IA ,- -- .



Appendix B Questionnaire %. ..
.

PART Tr: DEVELOPMENT CYCLE %

Tha purpose of this part is to determine the detailed technical and management issues that influ- "-?
enced the scope, development, and acceptance or certification of the system. Tiis part is divided -
into five sections: general procedure, requirements definition/analysis, system constructtiomi, SysI(I II
evaluation/validation and field support. Note that the division is arbitrary and does not imply -
that Al software should necessarily be developed in a framework consisting of five corresponding
phases. However, the phases do parallel major objectives in developing good conventional software
and may have some applicability, in a broad sense, to the development of good At software.

GENERAL PROCEDURE

GPI. A model for Al software development could consist of the following stages:• ....

Identification - determining problem characteristics "* *.

" Conceptualization - finding concepts to represent knowledge

* Formalization - designing structures to organize knowledge (tool building)

* Implementation - capturing knowledge .-

o Testing - validating a knowledge base and system behavior .-.. a

Please comment on the suitability of the above stages for a high level (i.e., general) Al software
development model. Also, please contrast the above steps with the approach or steps that were
followed in the development of the subject system. Indicate whether the steps were followed in a
sequential manner or iterated upon some number of times. Lastly, please provide a brief description
of any products (i.e. documentation or code) generated as the result of each step.

GP2. Conventional software development efforts typically include review sessions, such as design .
reviews and code walkthroughs, to track interim project progress. These review sessions may
be formal (customer attended) or informal (internal staff only). If applicable, please describe any
review sessions held and/or any documentation produced during the development effort to ascertain
progres..

REQUIREMENTS DEFINITION/ANALYSIS

IIA I. Conventional software development efforts typically begin with a requireinents analysis phase

to identify and hound the problein at hand. Did you perforn a requirements analysis for t lie subject
systei',? ''

Ii A2. If the answer to IAI is "yes", proceed to RA3. If not, how did you bound the goals of tle "

(level piimeant effwort?

It A3. If tIhe answer to IIA I is "no", proceed to the next section. Otherwise, describe tlie act ivit ies

: .0cl.ao'te t with the requirements analysis phase.

B-7

%. . . . . .

Ar A -- r' % . . ...



d. 'i -.1%,

Appendix B Questionnaire

P% "I Were users included in the requirements analysis process? If so, to what extent was their

input useful in defining the system? -b

2. Were any software tools used in the requirements analysis?

3. If documentation was generated, describe it. Was the documentation reviewed for approval? 4. . -

4. Were the requirements frozen at the end of the requirements analysis such that any future
changes had to go through an approval process?

SYSTEM CONSTRUCTION

SCI. In formulating a knowledge base, the knowledge acquisition process may be exercised in a
number of ways. For example, one approach is for a knowledge engineer to study the domain area
and then interrogate an expert. The interrogation may be tape recorded to provide a verbatim
transcript for further reference and review. The information obtained in the interview ma, be
assembled and ordered into subcategories from which a knowledge representation approach can be •
determined. Describe the knowledge acquisition process for your project. Include whether or not
the process was documented. If so, was the documentation reviewed for approval? Lastly, what
determined completion of the knowledge acquisition process?

SC2. Some methods of knowledge representation include conceptual dependencies, semantic net-
works, frame based, logic based, and production rule structures. What method(s) was selected for .
your system? If applicable, how was the method reviewed and approved? Also, please discuss the
means employed to accommodate ill-defined or incomplete knowledge.

SC3. In a rapidly developing discipline the domain knowledge may be continually increasing. Since
initially formulated, has the size of your knowledge base (number of rules, frames, etc.) expanded?
If it has, was it necessary to obtain approval for each addition to the knowledge base? If so,
describe the approval mechanism. Lastly, was there a point at which it was decided not to include -:
any additional knowledge in the knowledge base, and was this a managerial or a technical decision? .-

SC4. The type of knowledge representation method selected often determines the programming
tools used. What tool(s) was selected for inclusion in the subject system? If applicable, include $
a description of conventional languages and components used and how they fit into the overall
, systeim.

SC5. (Expert Systems Only) What dimensions were considered in identifying the "expert" behind
the expert system? Was there any attempt made to verify the accuracy of his or her input prior
to the system validation phase?

SC6. (Expert Systems Only) In developing a knowledge base for an expert system, input from
more than one expert may result in a mixed approach that is not representative of any individual -

expert. low many experts had input to your knowledge base? If more than one, how was the
information handled to eliminate conflicting and/or redundant facts and approaches?

SC7. Were users introduced into the development process? If so, to what extent did user partici-
pation influence the evolution of the developing system? .'

B-8 %

% P 4 . .VC- . 4. %- _4%"° . *," . .. .. .* 4. ... . . . . . . . . . . . .. . . 2". ". " . ... .. '..o , , - . . , - --.... .- .
% - -...-.

%.% % 'sj,'_ ' ',. ,-.... J,-d' ""4 " .""." '-=" '-. -'.-'=.' -- "- % °-- "% "%"%"". " . -- " " " .- %-"-.% =--' .' .- '-.' " ". .- ".%



wik V V~

Appendix B Questionnaire

SC8. Exploratory programming is the conscious intertwining of system design and inplenent atiot,.
Namely, as the system is implemented, design changes may be warranted. Did your sysLem go
through an iterative period of design and implementation changes? If so, what was the magnitude
of the changes and was it necessary to obtain approval prior to implementing each change? If so, -

describe the review/approval process. .%

SC9. Based on an accepted design, rapid prototyping is an approach used to quickly develop a
working system upon which to build. Was this approach used on the subject system? If so, describe

the process. If applicable, at what points were the evolving prototypes subject to review? Once

approved, was each prototype frozen as a reference point from which successive changes were made? -

SCO. Were there any controls placed on the software to track updated versions generated during .- :.--.

system development? If so, describe the control mechanism.

SCll. A "good" Al system architecture may have the following characteristics:

* separate inference engine from knowledge base

" as uniform a knowledge representation as possible

" as simple an inference engine as possible %

* overlapping knowledge

Describe the characteristics of the subject system. To what extent were the architecture character-

istics of the subject system influenced by the following domain characteristics:
* . %.

9 size of solution space

* reliability of data or knowledge -- l

0 nature of data (dynamic vs static)

V. .%

0 nature of knowledge

• user interf:es"-

SC12. The following elements may be potential components of an ideal Al system (brief descriptions

of each element ire presented in Attachment 1):

* Language Processor

* Knowledge Base

- Facts ...

- Rules

* Justifier

B-9 "%,..

P.~~~~P AI* ~ * * p .P
-,d', %  '  "-".  .- / ." , '. '/'f .r . '. '''- .- ,". .. ''-" ," . € " " ." . " " ." . . - - - -%. . . .e-

, . %.:"'x " - " "' """'',," """'. - -- '-b . " ""' '"" -b -- ."- "-. "." ""- '""-"' -"""''"'"' "-



V

Appendix B Questionnaire

%

* Interpreter

e Scheduler *'-

* Consistency Enforcer

* Communications Handler

Which components does the subject system contain? What factors (e.g. design constraints, do-
main characteristics, cost/schedule constraints, etc) influenced the decision to include or exclude
components? Was the architecture subject to review and approval by managerial and/or technical
associates? .

SC13. Please give an indication of the size of the AI system (number of rules in the knowledge .
base, lines of code or some other easily understood unit of measure). Identify the division between
Al and conventional software components in addition to the percentage of code dedicated to each . ,

of the components listed below. Add components, if applicable to the subject system.

* knowledge base W.S.

o inference engine "'I

0 user interface

* support environment

SC14. Software tools are often imperative in Al system development because a small team is : .
responsible for generating a large amount of code. Describe the software development environment
under which the subject system was developed. If tools were not available, how do you think the
lack of same hindered the project?

SC15. How was the Al software interfaced with conventional software? What problems were noted
in making the interface? " "

*% .% -- *.

SYSTEM EVALUATION/VALIDATION

SV1. Please describe your overall approach to evaluating the performance of the subject system.
What type of test documents (e.g. plans, procedures, reports), if any, were written? Were users
involved in the test process? Were test strategies applicable to conventional software such as
multiple test levels (e.g. module test, integration test, program test), branch coverage, boundary
value testing, stress testing, etc, used to test the AI system? If not, describe the strategy, if any,
used to test the system.

SV2. If the knowledge base, inference engine, and/or other components exist as discrete entities
in the subject system, were they tested separately? How did other architectural characteristics
influence the test process?

B-10 %
., , w - ,,- ,- . . ,- . .

.
. ,,. ',- .. ., " . -.. . . ... . ..-.- ,-, . . " ," -, -. . ..-. , .. i" % . . . . .



Appendix B Questionnaire

k .0, '
- ,€" u

e? %

SV3. Is the subject system self-modifying (is it capable of changing static evaluators, imtt.ermd conI-
cept formulations, or modifying its inference engine in response to new data or incorrect reasoning)?
If so, what impact did this characteristic have on your approach to testing? Did you repeat tests
that performed properly prior to the self-modification? If not, how did you know that the tmodified %S- ,

software did not impact the performance of the system in a negative way?

SV4. It has been advocated that the evaluation of an Al system should emphasize quality assess- %

ment (ie overall user satisfaction) rather than more traditional performance measurements. In one
particular investigation, an interactive evaluation subsystem wa, built into an expert system known
as the Automated Academic Advisor'. The purpose of the subsystem was to monitor various pa-
rameters of system operation and to administer interactively questionnaires to the user while the
application system was running. The subsystem would statistically analyze responses. Please state
your opinion on this approach to evaluating system performance. Does the subject systemil contain
such a built-in evaluator (or any other kind of evaluator)?

SV5. What kind of tools (built-in or otherwise) and techniques did you use to evaluate/validate
the Al system?

SV6. When testing the subject system, what criterion did you use to judge whether the system
passed or failed a test? Please elaborate for all levels of test (e.g. for testing a specific rule and for
testing the system as a whole). What criterion was used to judge that the systemn was ready for .,.:

use?

SV7. In rapid prototyping, the general approach is "build a little, test a little" If rapid prototypliig
was used for the subject system, please describe the method of system evaluation. Did tile t esting

phase become more rigorous as the system matured? %

FIELD SUPPORT 'NIP

The following questions apply only to those systems that are actually being used in the field. If use - .
of the subject system is limited to a research and development environment, proceed to the next . M "
section.

FSI. Was performance an issue, either in terms of response time or degree of accuracy? If applica- ,
ble, describe the effort taken to improve system performance and its effect on phases of the project •
that had been frozen. " "."

FS2. Were any enhancenments suggested by the users as they learned to work with the systvm? IF .

a)plicable, describe the mechanism for implementing the suggested changes. .-....

- J -.,. ,,

Cercone, N., et al, 'Designing and Automating the Quality Assessment of a Knowledge-Based Sy'tepm The Initial

Antomated Academic Advisor Experience", IEEE 1984 Workahop On Prncpleo Of Knowledge-Baed Sy.-em,, ..--..

IEEE Catalog Number 84CH2104-8. -.

B-11

. %.. . .. .% . . . .. ~% *% ~ **-** %~ %**..

% % %* %. % % ** % % %* %. % %*.,\%% % * % % %.- . .



%%

%
Appendix B Questionnaire

%*0~**

PART IV: MISCELLANEOUJS

NI I. Lessons learned - Looking back over the entire developmntt cycle of Ce. 24111ject, systemu, ire
there any activities that should have been~ (lone dilferemitly? If W), describe the activitiei, hlow they
should have beena done, and whether or not the new approach will be ii-m-l on itf.rture Al myrittesn.

M12. Please provide any additional information regarding characteristics of the Woftware develop-
ment you consider unique to the subject system that were not covered in your responses to any of
the preceding questions.

%p %

% % % %%S
% %' a

Y-L



-A-

Appendix B Questionnaire

ATTACHMENT I

GENERAL DEFINITION OF TERMS

Language Processor. A language processor mediates information exchanges between the expert

system and the user by processing questions, commands and volunteered information expressed in

a problem-oriented language.

Knowledge Base. A knowledge base is a repository for rules, facts, and/or information about "'-'

the problem to be solved.

" Rules - This part of the knowledge base contains procedural interpretations.

" Facts - This part of the data base contains declarative (i.e., non-procedural) information

pertinent to the expert system domain.

Justifier. A justifier explains to the user why certain conclusions were reached and why others "

were not.

Interpreter. An interpreter executes the chosen agenda item by applying the corresponding -.

knowledge base rule..- .-

Scheduler. A scheduler, which may contain a fair amount of knowledge in its own right, controls 0

the agenda by determining which pending action should be executed next.

Consistency Enforcer. A consistency enforcer attempts to maintain a uniform representation -e

of the evolving solution by applying some quantitative scheme to determine the degree of belief ii-

each decision.

Communications Handler. A communications handler manages the interfaces between conipo- .,

nents in a hybrid or multi-component system (e.g. blackboard).
% %p

%. 1. ,,-%

-', ,VP,%

.,'S:,:I

, .~ 
*- 

. . , ,."

?.- .,



,,,i 9.LWW.. u.W. V. .VU,,..'.v4 .w q~ ~ I.. ,, z . . . . ... ,1 -. , , .. ,.. ,, * d . , -. f .t ,,

%,

* ' ft. -f.t

Appendix C

Case Summaries •."

C.1 ARINC Summary

The ARINC System Testablility and Maintenance Program (STAMP), allows an engineer to analyze
a system's testability for field maintenance operations. The system will recommend design changes, N
and provide fault isolation strategies for manual, semi-automatic or automatic field fault isolation. *

The development team was comprised of four to five engineers, with no more than three computer
programmers assigned at any one time. Two of the engineers had previous Al experience. Three
of the project personnel had DOD software development experience. Nonetheless, only internal
standards were used during the prototype and development phases.

STAMP was funded as an IR&D project. The initial prototype was released within 6 months ...
followed by a field model which was developed within two years. The system's success is based on
the fact that STAMP demonstrated the possiblity of a new technology and significantly increased
productivity by automating a manual process. STAMP is currently an established product at
ARINC.

There was no requirements analysis for the prototype. However, a requirements analysis w:Is per-
formed for the rehosted version of STAMP from an Apple to the hIP-1000 operating systemi. The ,
only formal software development procedures followed for the initial prototype were during prob- "
lem formulation which encompassed some of the ideas behind identification (determining problemi ' - .e%

characteristics), conceptualization (finding concepts to represent knowledge) and formalization (de- k-
signing structures to organize knowledge, i.e., tool building). Throughout the prototype phase, the
capability of the system was continually assessed. During development of the relhosted version
of STAMP, more rigid standards were followed. More attention was placed on finding ways to

represent knowledge and formalisms were developed. Extensive documentation was required.

The knowledge acquisition is inherent to STAMP. A new knowledge base is implemented by a
testing expert with each new use of the tool. .-

STAMP is comprised of the following components: a knowledge base, an interpreter, a consis-
tency enforcer and a compiler. Tools used during development encompassed a Fortran 77 corn-
piler/debugger and the HP-1000 operating system.

The STAMP system is written as conventional software in Fortran 77. The system feasibility was S
tested by individuals who checked code at the module and integration level. Users were allowed a .

two imonth trial period to shake out report problems with the system. A user conference was then
held to determinie final action items.

Overall, Ihe system underwent five major architectural changes which allowed for incremental - ,

tesling and iterative system development. Some of the lessons learned were to develop a si ple. 0
usable )rototype excluding bells and whistles; document early and frequently; free the experts front %

.-....W-
% % %

%t %' % %

% t 'f f

fte Z.fftt



F~~' _J777P -FIVF

% le %

C.2 Boeing Computer Services Su*tunary .--- A ,

administrative burdens to allow them the time and opportunity to develop ideas; and encourage % %" "

creativity during the prototyping stage. -

C.2 Boeing Computer Services Summary

Boeing Computer Services reported on a Strategic Force Management l)mishon Aid whih is a .y:..

knowledge-based replanner. The inputs to the system are: a description (f it previously creah |'-"."-
plan for the employment of strategic forces, and a description of an event which woul requiire .i '

alteration to the plan. The system then determines a suitable modification to the plan which is"--,

presented to the user for review and approval..,' t

The project was developed with internal funds by one engineer with previous Al experience. The.

first prototype was developed in six man-months, and the system is not currently fielded. Boeing
Computer Services had previously built over 30 prototype Al systems. In terms of demonstrating
the feasibility of a new technology, the system is a success. Overall user satisfaction and significant

productivity gains were also substantial.

The model used to develop the Strategic Force Management Decision Aid consisted of the following

steps:

koELICITATION pKnowledge is acquired from information sources to produce an information ",Y

i ~base. .--

p ANALYSIS -The information base is analyzed and structured to produce a knowledge base..-

a TEr STING The knowledge base content is tested to produce a case base. ,la wic i

T IEFININ -The case bas in fnd by one eng ieerith previousdA bnsex perie nceg T

r COMBINING Multiple expert knowledge bases in the same or related problem domains are de%

combined to form a knowledge network. 3And

t TESTING - The contents of the knowledge network is tested to produce a knowledge networksini

case base. ,

"TAILORING - The knowledge network case base is tailored to the requirements of the specific i '
customer to produce a delivered knowledge based system.

ThRECORDING - The delivered knowledge based system may incorporate recording of infr- %

* 4?

IIaTion that is used as an information source for further elicitation. p

These steps were iterated several times, with feedback from subsequent steps used to revise ase

res*lts of previus steps. Three review sessions with the 'customer' were held which included

demonstralioNs of the current level of system functionality and an exchange of information, ideas

A rBlIreNeiNG% atMalysis phase was perforled which consisted of discussion sessions with the 'cus-

tomer' to identify types of problems requiring a solution which uses the replan approach. For each

% ^

% % % V, %-% % %

cas base.
% % % '. . .. ." .

%.. % % %



-Z W . T0.471.

C.3 Boeing Military Airplane Company Summary

problem identified, a suitable problem solving methodology was determined. The set of problems
and their corresponding solution methodologies were used as a definition of requirements. Ils(r -

input to this process was considered very useful.

Four experts were involved in the process of knowledge acquisition which consisted of informial .w
interviews. A negotiation process was used to resolve any differences. The experts were chosen "% .OP
based on their years of experience and the community acknowledgement of the person's status
as an expert. The Knowledge Engineer was also an expert in the field and provided additional
verification of the experts accuracy. A frame based, logic based and production rule representation
was used to encode the knowledge. Ill-defined and incomplete knowledge is handled through the
implementation of alternate paths through the production rules in a manner similar to default logic.

The tool KEE, operating on a Texas Instruments Explorer Lisp Machine was used to develop the
system. A rapid prototyping approach was also used in the development process. The evolving *
prototype was subject to review on a continuous basis informally, and formally at about two-month
intervals. There was no approval necessary for design changes, and no controls were used to track
the updated versions of the system.

The components of the system include:

e Language Processor

* Knowledge Base

* Justifier

* Interpreter

* Consistency Enforcer

In terms of size, the knowledge base consisted of 50 productions rules, approximately 45 frames used
as templates, and 8000 lines of LISP code. During execution of a typical scenario, the knowledge
base grows to 300 or more frames and several hundred logic based facts. -'- -

A set of test scenarios was used to validate the system. No formal test plans were developed. The
success criterion used was to examine the plan generated by the system and determie if it would "v
be considered an acceptable plan by an expert.

C.3 Boeing Military Airplane Company Summary -

The system reported on by the Boeing Military Airplane Company in Wichita, Kansas, is an
Internal Research and )evelopment (IR&I)) project called .4 I for .. 0imi~i ic 7"lirq t R Rcoqr .i-on

1~'(,.'lThe ptirp4,se' of the systeni is to reduce problems in the modern battlelield eriviroiment I.,.' ."1
Ivy imprivitig presviii target recogiizers through Al tech niqws, 'l'his long term research project is ' -.,

ciirrei tly in the feasiility dentonstration phase. ., .'..

'lhe horing A'l'll software development team included one lead engineer with approximately twelve

years of conventional software research, development and additional personnel knowledgeable in

.%

S- % % -C/;, -3 .,. .

, . 5- .-, ?.*d/./7



C.3 Boeing Military Airplane Company Summary

various areas including image processing. The lead engineer had also completed an in-house Al
Associate Training course. All involved personnel had considerable experience with DOD and corm-

mercial software development. Standards for conventional software development had a significant,

influence on the Al software.

The general process used in the development of ATR to date consisted of tile following phases:

* Identification - a study was undertaken to determine military product areas that. were suitable

for improvement via Al technology (i.e., ATR/image understanding) ..

* Concept nalization - conceptualization of problem characteristics derived t.hroighoul. th' hden

fitication phase into systein capabiliti.s (i.e., dealing with sens.or fuiooti a llily , t iul t lt 11 i,1 4

or uncertain data)

* Formalization - considered a particularly valuable phase in that the expert system development
tool was selected which determined the form of knowledge representation for the ATR system

Implementation - gathering knowledge via literature surveys with minimal expert consultation

* Testing - validating the knowledge base and system behavior (i.e., demonstrating system IV *N

concepts)

Each of the above phases is considered appropriate for the development of an Al system. How-
ever, it was perceived that as additional information regarding the problem was encountered, an
iterative phase which produced a new prototype model for each reiteration was necessary to the
development of the ATR software. The cyclic phase deviates from DOD and company standards
in that requirements are not fixed. 

, %

Knowledge acquisition, which is never considered complete, consisted of a literature survey in the

areas of image understanding. Documentation was prepared with known techniques, and algorithms
for image understanding were reviewed by internal company personnel.

The knowledge representation method of frames and rules was determined by the type of data
and available tools. The knowledge base continues to expand with informal reviews and a formal
approval process. Tools used in developing the software were Knowledge Craft (in particular OPS-5)
and LISP. 0

,. The major components of the system: a knowledge base, justifier and an inference engine, were

largely determined by cost and schedule constraints. In addition, the architectural components
were influenced by the tools available and were subject to review and approval.

The ATR system has not reached a stage in which extensive project performance can be evaluated.
As the system reaches completion, and is ready for deployment, user satisfaction will be examined

as well as productivity. The feasibility of the system is determined by the ability to demonstrate %,
concepts as in the original proposal and the evolving concept definition. Every rule was triggered
and fired. llowever, not every combination was tested. The system passed testing when a few

image inputs prodlced the appropriate output result. In addition, the user interface is continually
lested. As each prototype was released, the main testing target concentrated on those areas where
changes had been nade. .. %

1% C-4

%II I

0 I0

%le.~?. % . - 0 K 5



C.4 Brattle Research Corporation Suznniary

Overall, the ATR system, while not an expert system in the classic sense, has a donxain which -,

is considered much more complex than the typical expert system. As a research project, the -
reliance on literature that influences and causes continual changes to the re,,iirements, resoilIs fit all
iterative process through all the development phases and ends in a new prototype Thll( flexibility
of a research area such as the ATR would suffer without the ability to rework requirements to ,
accomodate important data or changes to information.

C.4 Brattle Research Corporation Summary

Using both venture and contract funding, Brattle Research Corporation is building a generalized ,
text extraction system focusing on business information. The sources of business information are V
online database services such as Dow Jones News/Retrieval and wire services such as Businesswire
and PR-Newswire. The system has two basic functions: topic recognition/retrieval and extraction.
The topic recognition side of the system has gone through a feasibility study, several prototypes arid -.
is being appled in staff study contracts. In terms of breadth and depth of retrieval, the intelligent %
topic recognition aspect has been found to be much more accurate than currently available keyword = '

search techniques.

Several extraction applications have been tested, and a general extraction utility is ntow in tIhle
engineering design phase. User interface issues are still in a very early stage.

The development environment for the system is based on the Symbolics 3600 using Lisp. For
portability reasons, Brattle Research is moving from Zeta-Lisp to Common Lisp. The company X
has built its own database management system, information retrieval language, and their own text >.

analysis tools. The tools were a tremendous aid in facilitating rapid prototyping and conceptual
breadboarding. .- 5

Brattle Research employs a relatively organized development strategy: define overall project struc- .
ture, identify milestones and allocate budget vs. phase. Documentation includes conceptual system F-%w .
specifications and design documents which contain timetables and budgets. All documentat ion re- ON

W. -
ceives both managerial and technical review with feedback in terms of consensus rather than, strict e
approval/disapproval. Weak areas identified by the review process were focal points during the
prototyping phase. '

The project team currently consists of seven people all with more than seven years experin-e ill
the A I [ield. The overall projected team size is estimated at twelve. -.

P r

For each topic, the knowledge acquisition )rocess is based on working with someone %ho is ftnuiar '.

with 1.he way a topic is described in the literature. The knowledge engineer works to deduce ..

a set. of patterns that. describes the topic. The knowledge base is then comprised of linguistic 0
patterns associated with particular topics. The inference mechanisi includes a variety of techniques - .

collectively described as a simple form of discourse analysis. Specific methods include pattern .'.-.. -

recognition (including some signal processing strategies - i.e. treat text as a stream of synibols), ""."a'a

and linguistic mechanisms such as chart parsing, categorization of syntactic elements and treatment -

of context-free grammars.

In terms of user involvement, existing customers have been providing feedback on the prototypes . .

C-5

,- "# m, -. -
•  

-. - -. -'¢' "a a. .' .' - " ." - "" .-V .. ..
%J~ % %



U 7. -.7 . ..

,IN

C.5 Carnegie Group Inc. Summary

Before releasing its product, Brattle Research plans to form a scientific advisory boarl to ,o,,e,.t

on the system.

Brattle uses Symbolics configuration management system augmented with its own code to control
software distribuition. One of the Symbolics machines is a dedicated fle server which colhlets nill

incoming information in a central database repository.

Test data, which consumes 70 megabytes of memory, is based on articles from The Wall Street

Journal, Electronics magazine, PR-Newswire, etc. To date, the testing criteria has been absolute

accuracy. Both regression analysis and blind tests, i.e. - test sets that haven't been processed

before - have been used.

The system contains code to automatically compile the abstract descriptions of grammars and
documents into machine code for quickly searching text.

C.5 Carnegie Group Inc. Summary 4.

The Carnegie Group Inc. reported on the DISPATCHER System which monitors and controls a
factory floor Automated Materials Handling System. The system, a contractual project, took thirty-
six man-months to deliver. The prototype release took twenty-one man-months. The system's .
success is based upon the product's feasibility, user satisfaction and productivity gains.

lhe devclopmenit team consisted of three engineers of which two had prior Al software development
experience. None of the engineers had any exposure to DOD software development standards.

The general development process for the DISPATCHER system consisted of the following standard

phases: , %
4-,. .4

" Identification - determining problem characteristics;

" Conceptualization .- finding concepts to represent knowledge;

" Formalization - designing structures to organize knowledge (tool building);

" Implementation - encoding knowledge; and

" Testing - validating a knowledge base and system behavior.

However, the development process did deviate from the above methodology in two ways. First,

*." knowledge acquisition was an additional phase that began after identification and before concep- -a-" :
tualizati,)n Secondly, the DISPATCHER System was developed incrementally which involved
stepping Ichrough each phase iteratively until the system was sufficiently refined. The product was

continuoiisly updated up to and after the final installation. a',a..-.,.** %

-" Alt Imgh it appears that a requirements analysis was not performed, a specification document was %a.

*, produced. The development, effort was bounded by the document and by consultation with the
prchaser. After installation the development was bounded by negotiation between the vendor and

purchaser. ., -

C-6 7"-

. , ' ' . . ' _ . ' . . . ,% % %-
• , .l~lj j,#-J 4,"

•
P',. .'. '.j r,,., ..-.-.- % . ,..' . .% .' 4.'.' -+.'% %.-. % %J .' _% .%lLj4 . ..



~.. .

C.6 Digital Equipnient Corporation Suniary .'-

Knowledge acquisition consisted of information obtained from the specification doc'niiiiitatioii ald

from informal contact with the intended users. No domain experts were available for consultation i
on the domain.

The DISPATCHER System is comprised of the following comp~onents: a separate ruile anid fact %

knowledge base, an inference engine and a communications handier. Tools used during development ,

included the OPS5 and a code-generator for external database routine. The use of OPS5 mandated

separate fact and rule knowledge bases while domain considerations required a communications
handler.

The DISPATCHER System's functionality was tested by the user. A simulation tool was built
as a means by which the major system with which DISPATCHER communicates could be tested.
Testing was considered complete on the basis of casual and random tests of the system functionality,

Overall, response time and accuracy were main concerns throughout the development effort. Users k-"
provided continuous functionality improvement suggestions to the engineers who attempted to %

incorporate their ideas. A recommendation to commit the user to a more detailed specification of ,

the ystem was made. Also, the system architecture could have been more carefully defined and %

reviewed at an earlier stage in the system development. 0

C.6 Digital Equipment Corporation Summary

Digital Equipment Corporation (DEC) reported on XCON, an expert system that configures DEC

computer systems. Specifically, XCON accepts a list of items from a customer order, configures ..

them into a system, notes additions/deletions made,and prints out a set of detailed diagrams
depicting the spatial relationships amongst the components. With the automation of a formerly
manual task, XCON has decreased the number of costly configuration errors and significantly

increased customer order processing speed. % 41

The development of XCON began in late 1978 at Carnegie-Mellon University (CMU) where it was

known as the RI system. In early 1980, it was installed at the first DEC plant and used on a daily
basis. By January 1981, DEC no longer required assistance from CMU in terms of maintaining

and developing XCON. Since that time, XCON has become a mature system and is currently in

the "production mode" phase.

II. is dillicilt to discuss X(,'ON without mention of the adjunct expert system XSI, (expert selling -

tool). By sublmit.ting orders to XCON, XSEL helps the DEC sales personnel Interactively configure -

conipiter systems to prepare accurate quotes and match specific products to customer needs XSEL "

and \(()N shre the same knowledge ba.e and together contain more than 10,0(), rules Because •-.

tie k,ow ledge lins' is so very dvi nuaic. (i.e. new components are frequentl,, itntrodticed existing " "

I,'~,,entus are oft en iudilied), an upgrad(l version of XSPI. X('ON is released quarterly. Over .

he Ial few ienrs, I)I"t has adopld t a formal release procedire % hich consists of the following '"
long~~Ia~i.4. .%.. -'

% % '-,._

* I'lanning; @

* )evelopment; .

%%

%'. -,..- -% . . .- - - -, .. -.-... .. .. .- , % -. ,,- , ... .......... ,.. .,,. .,.'-, . ...- * % .'

%,J1 . " .% ,o , .% % . - % - . - . " x ' . % . .% " .% - , . - -' . % , . - . % .",.

.% " a . " .m . % % . - % .*• , . % % % . . . . . . - -.- % - ,..• .%. .•. , '=dhae . ' ...=,,. ' '.' . - .. ,, t . , .. - ._- m_ o, . . . . , . . '.= " "",""" . " % % %
.
= ""' %,%



P ?

(.7 Exl),ert Techijologies, Inc. Sumuiary ".'

* System Quality Review (SQR); and 4.'-:-

" Release.

The procedure is iterative from Planning through SQR. In the Planning phase, the workload is ,.

prioritized, checks are made in the OPS5 code for dependency levels and interim target dates
established as a function of the scheduled release date.

In the development phase, knowledge acquisition occupies a large portion of the effort. Multiple
experts are iivoived for each new product. Technical design reviews are held at the team level and
implementation of the changes within the nine VAX cluster environment occurs. Correctness is
verified using several internally developed tools which perform checks on such things as rule syntax .,,...5

and database entries. The VMS configuration management system (CMS) is used to control all
source fileg. Testing on the changes made (similar to unit testing) is also performed during this , -

phase.

In the SQR phase, a project test plan is established and executed against, a large set (> 1000) of 16 0 % 

hypothesized customer orders. The testing criteria is wholly qualitative, namely, if there are no
major problems that are foreseen to adversely impact th( business, the new version of the system 0
Is approved. Following a successful SQR, the Release phase begins. The target DEC facilities
receive a new tape of XSEL/XCON, an installation checklist, an installation systems management
guide, an on-line summary of new parts and system functionality and, if necessary, a summary of
significant problems yet to be resolved. %5-

The project team currently consists of 35 staff divided into the following groups: •
-- V.., .

" Administration (3 people);

" User Support (5 people);

" Technical Support. - (6 people); and

" Knowledge Engineering (21 people).

The 'echnical Support tearii deals with the non-OPS5 code - there are 5 conventional languages
that comprie Ilie system as well as many databases. The Knowledge Engineering staff is typically .

h%.

sub-divided into 2-3 teams whose responsibility is knowledge acquisition and representation, OPS5
coding, and testing. The project is run using a management team concept wherein the project
manager makes very few decisions without consulting pertinent team members.

C.7 Expert Technologies, Inc. Summary

Expert Technologies, Inc. (ETI) reported on their PEGASYS system which is an expert system
for the automatic pagination of yellow page directories. The system has three modes of operation:
batch, review, and development. In the batch mode, PEGASYS provides automatic pagination _

using heuristics. In the review mode, the user can review the system's pagination for quality

C-8

.-.-P-.-. . . . . ... . . . .. . . . .r. ,
-% -- " - " , -- .. -



'0

C.7 Expert Technologies, Inc. Siuninary "

control and interactively make corrections. The corrections can be made manually - graphics ...

object composition, or they can be inputted into the knowledge base - changing/refiniig a rule( I,

yield better pages. In the development mode, the user has the ability to design ew rule hascs al " -

examine the resulting new products.

* PEGASYS was an internally funded project and ETI's first Al system. The development team
consisted of 7 to 8 engineers, all with LISP experience. Three members of the teani also had prior 'r

Al experience. _

Seven of the team members developed the first two prototypes. The first one was developed in one
month and the second in two months. Eight team members developed the third prototype and the
deliverable system. Each took three months to develop. The PEGASYS system was delivered in ..'--

69 man-months, three months ahead of schedule.

PEGASYS is considered a success in terms of demonstrating the feasibility of a new technology and %_V ,,

overall user satisfaction. The system's most significant success lies in its flexibility which results in
a system that can be extended and maintained easily.

A requirements analysis phase was performed which included user input. The tools KEE and ., ,

Knowledge Craft, along with Xerox machines and TI Explorers were utilized in this phase. A-

functional specification was generated which described 90% of the eventual system's functionality. ' ,

The requirements were frozen at the end of this phase. L

Knowledge acquisition was achieved through verbal communication between the domain experts

and the knowledge engineers. Extensive documentation and prototyping was performed during
this process. The documentation was reviewed by the senior design engineer for approval, and
the prototypes were integrated into the system upon approval. The choice of experts was obvious

as there are only a few people who have special pagination expertise. Three experts were used

and knowledge from either one was encoded and results approved by the other two. This process . -%e

allowed for complete conflict resolution.

The knowledge representation method consists of a semantic network of frames. This method was

chosen because of the close match it provided with the domain knowledge. Incomplete knowledge
was encoded procedurally. The knowledge base expanded during the development process with

approval by 2 senior engineers. PEGASYS allows for extension of its knowledge base on an as-

required basis.

=There were three major break points during the development process where new designs w ere

encoded. This resulted in a complete reimiplemetation of the system at the end of the second

break point. Approval for these changes came from the project manager and two senior knowledge '

engineers. Ai In-house proprietary configuration management approach was used to track updated'
versions of the system during development.

'The i'F, GASYS system has the following characteristics:

* A simple inference engine

" Knowledge encoded in terms of semantic primitives

" Meta-rules encoded as "process" rules (procedures and frames,'senmantc objects)

C 9

Ir~. .% e %

. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
% ~ ~ 'P t'- , *% Y ~~'* I~F r 2.>-~' ... ~*s -. ~



C.8 Frey Associates, Inc. Summary .IA%

Consistency Enforcer

The architecture was reviewed and approved by top Al specialists in industry and academia. The
user interface was done conventionally, and was one of the two largest parts of the system.

Development tools were used in building the prototypes. The tools contributed to development V.
frustrations because of the expertise of the Al programmers. Consequently, development was -
moved entirely to LISP programming.

An acceptance test plan (ATP) for the system was written before the start of the project. This
plan detailed acceptability with respect to:

* Productivity

" Efficiency

" Software maintenance and performance
N

System performance was evaluated relative to the current in-house systems (i.e. manual and semi-"'
automatic pagination). In terms of field support, fine tunings of the system architecture were ..-. '--

incorporated to enhance the performance of PEGASYS in terms of response time and degree of
accuracy.

C.8 Frey Associates, Inc. Summary .

Frey Associates, Inc. reported on the Themis TM Management Information System. Themis is a
'-" natural language processing system that answers English requests about information stored in a

database.

The project team started with 6 staff members and eventually grew to 12 members. One personhad previous AI experience. Since most of Frey's projects are system oriented, as opposed to Data

Processing (DP) efforts, it is surmised that most of the software engineers had DOD conventional
software development experience.

Themis was funded internally and followed a schedule defined by management. The first prototype
was completed within 6 months. The product before beta fielding took approximately 6 man years 0"-."-
with the final product encompassing about 10 man years.

The general process used in the development of Themis consisted of the following phases:

* Identification - determining problem characteristics

o Concept uali7ation - finding concepts to represent knowledge

* * Formalization - designing structures to organize knowledge (tool building)

o Implementation - capturing knowledge

* I-sting - validating a knowledge base and system behavior

C- 10

,,* .°- ... .'. -- . -. .. *. -= . *.. * *o- * . %' .. * %° - * , "- ". * *. ". ." . - **.- -' .' . - - - - - - ,".- % %~~~~~~~~~~~~~. . ........-"..-"." -• - .... . .--- ".....t ...-.. ." .". . .".v",'," , ,",'"*~~ 
% %.V%'



2 . %.

C.9 GTE Data Services Suiiiiary -
: A .'..

Documentation was provided at the end of the Identification, Conceptualization and Formalization _
phases. The Implementation phase was divided into 2 stages, prototype and actual product. Ar-

iteration from Identification to Implementation occured at least once. FroI then on, iterations were
primarily between Formalizatio,:. Implementation and Testing (4+). Testing was used to provide ,
a basis for the user documentation )f the system.

As a natural language system, Themis iz different from an expert system in the approach used for
knowledge acquisition. The goals of the system were limited to the inquiry characteristics of one
data base from which both the requirements and user interface plans were derived. 'IThe user's iftain ,-.

contribution to the system effort was in defining the user interface and the types of utilities needed .

to support the types of queries needed. The user was also valuable in defining types of queries for
Themnis. , '

The knowledge representation method used was rule-based since it was regarded by the design
team as most appropriate to natural language processing. The main programming tool used was
InterLISP which included the Programming Assistant, DWIM, Masterscope, a structure editor, y,,

and debugging tools. Source management tools were also used.

During the development process, a series of prototypes were generated. Major design changes were "

approved and implemented throughout.

Themis is comprised of the following components: Language Processor, Rule-Based Knowledge
Base, Justifier, Interpreter, Scheduler, Consistency Enforcer, and a Communications Handler. The
Al software was interfaced through mail boxes to the conventional software.

Themis is self modifiable in that when vocabulary and other new rules are introduced, Theinis will 0
evaluate contradictions and generate new rules to clarify these contradictions.

Test and regression procedures are in place for Themis which include correct as well as incorrect
queries. The testing data base is continually enhanced by internal testers, customers and users,

Due to the self modifying nature of Themis, tests are repeated without ending sessions to ensure
consistent results. User involvement is considered important during this phase and throughout the ; . "

lifetime of the system. Themis has built in testing capabilities along with automated error logging ".-
facilities.

Overall, the development process used by Frey Associates, Inc. has proven quite successful. If any
phase were to be enhanced, it would be the testing phase to ensure completeness of the knowledge.

C.9 GTE Data Services Summary

GTE Data Services reported on their Central Office Printout Analysis and Suggest System (COM-
PASS) project. COMPASS is an expert system designed to diagnosis problems with GTE's no. 2 •

EAX switch. As input, COMPASS receives a data file which contains error messages produced b) ""

a particular switch. The output COMPASS generates consists of problem and fault identification %
and maintenance suggestions.

This was G'TE Data Services first experience with an Al project.. The project team consisted of two
to seven people depending on the project phase. One team member had previous Al experience

and another had limited Al experience.

C-11

e, '4, 0 'A ',IF :, ,,. ', -" '.ud,., ,"i .' " *..". - ,'*-, . -"+'--.-'.' " ' -='. .- '.' . . -" " '". '



VV .%'W-N- %.--

%

C.9 GTE Data Services Summary . %-.

COMPASS was internally funded as a feasibility study. Management defined a schedule where the

prototype would be built in 36 months and three months later the systen would be in a limited

field study.

The success criteria for COMPASS are: technology feasibility, user satisfaction, and productivity

gains. COMPASS has been rated as a success in technology feasibility, as it has demonstrated the

usefulness of expert systems for some telecommunications problems. Currently the system is in a .P'\'"

limited field study and the users appear to be satisfied with the content and form of COMPASS
output. Success in terms of productivity gains has not yet been determined.

The stages of development in the COMPASS project are as follows: .

" Identification - this phase was emphasized due to the system's origin as a feasibility study.
An internal technical note and a paper were produced in this phase.

" Conceptualization - In this phase several internal technical notes were produced.

" Formalization - A software control knowledge base was added to the system to track the .
various knowledge bases and method files.

" Implementation - Knowledge acquired from the expert was collected into several documents %
referred to as Knowledge Acquisition Rules (KAR) documents

The above phases were iteratively visited, especially early in the project. During these phases,
internal reviews were held to report progress and to establish conventions among the various de-
velopers. A requirements analysis phase was not performed. Instead the system was bounded by
the knowledge necessary to analyze the error data and create maintenance suggestions for a certain
class of switch problems. In retrospect, the developers of the system feel that more attention should -6

have been paid to requirements and to testing.

A single expert was utilized to provide domain knowledge. The guidelines used to select the domain
expert were: must be recognized as an expert by his peers in other GTE telephone companies,
must be articulate, must be enthusiastic about the project, and must be available for knowledge %
acquisition one week per month for at least three years. The knowledge engineers together with
the expert created KAR documents. The knowledge acquisition process naturally ended when a .. ,
particular switch problem was properly diagnosed and appropriate maintenance suggestions were S
provided for the test data under consideration. The development tool KEE was used to create the
knowledge base which consisted of frames and production rules.

Rapid prototyping was not used very much in the development of COMPASS. Some of the devel-
opers feel that this was a definite shortcoming. To track updated versions of the system, a software
control knowledge base was used. This controlled how the system was to be built from the various •
files and also how changes and additions were to be saved, Actual end users were not involved in
ili dvehluovieit proc'ess. End users were represented by the domain expert who was a supervisor
of poi, lia ,l enld users. 'e

COMI'ASS is comprised of the following components: a language processor which was supplied by %- "

KEE, and knowledge bases - some containing facts only and some containing mostly rules. There -,. .

is no justifier, interpreter, scheduler, or consistency enforcer in the system. Communications is not ......

... .. '.'' ,

C-12'

"A" P-e

"o., %-,.s , ., .. , ., , ,, '.. ,-......, -..... % ..-. ',..-..-.,-......., ..- , . ..- - -.-
.-. ,- -.. '-,A,2 '" , n a . ",",, ,#.#.a.e,€,.r-,..,' , -. ",-,.._.- . " e"" "'"%" " "  #  

""" ' "d .. ','x"
- +:.::%.. ,, ,,. , n: -. .¢ / €%, -%. %.: %, %- . -.. ,,_ ',, .•, ..



-- - - - S - - - *. - .*..4 - . -

C.1O IBM Federal Systems Group Summary %'

part of the system but is handled by conventional software on conventional hardware for speed and :
efficiency. -

Depending on the type of diagnostic task, COMPASS contains up to eighteen knowledge bases

with over 1000 frames and 15000 slots. Five of the knowledge bases contain over 500 production ,
rules and there are more than 500 LISP procedures in the system. The user interface is handled -
by a single knowledge base with 20 frames and approximately 50 LISP procedures. The support V, %
environment is handled by one knowledge base with 10 frames and 20 procedures.

To evaluate the COMPASS system, independent experts were asked to read the KAR documents ".. .'-
and to assess the system's output given some input. Small test files containing error messages for
one or more problems were created and used to validate the system. The test files emphasized rule-
path coverage through the various COMPASS phases. Boundary value and stress testing was also
done. This was accomplished using test files which contained a small number of messages and single
problems. Regression testing was emphasized after modifications were made. Documentation of
the testing phase was limited to describing general procedures and overall results. LISP procedures PK
were writfn to perform the regressing testing in batch mode. Criteria for a test to be considered a _.
success was: for a given input, did the appropriate rules fire and was the proper output produced?
Appropriate and proper were determined from the KAR documents. Another performance issue 9
was the ability of the COMPASS system to perform with the same accuracy as experts.

The product developers of the COMPASS system feel that some improvements in the design pro-
cedures should be made. There should have been more consultation with the potential end users .

of the system and a life cycle should have been defined. The product developers should have been
involved earlier in the life cycle, rather than just the prototype developers. A high level design W
document should have been produced early in the life cycle and more attention should have been
paid to traditional software engineering techniques (e.g. maintainability is inore important, than ,,
elegance and efficiency). . P

C.10 IBM Federal Systems Group Summary

IBM Federal Systems Group reported on their Fault Diagnosis and Resolution System (FDRS), .,. ,
which is a hardware failure diagnosis for the ground-based equipment of the Air Force's satellite
command and control facility. The system diagnoses the failure down to the level for which there
is a redundant component and recommends the proper replacement procedures.

FDRS was developed with independent research and development funds by 4 engineers, one of whom e
had previous Al experience. An initial problem definition phase was completed in approximately 'y: ,*
3 man-months, and the first prototype was developed in an additional 3 man-months. The entire
project took approximately 20 man-months to develop. The final prototype was tested in with
the actual command and control software using a hardware simulation, but currently has not been -
embedded in the operational system. . ..

FI)IIS satisfies the criterion of demonstrating the feasibility of a new technology. lProductivil) .
gains and user satisfaction have not been determined yet since the system is not inst ailed in Ihe , - "'.
operational env ironient.. The systen ha, satisfactorily niet two additional crit eria; they are speed

oh execution, and integratlion into the main system.

C-13

r %e e

%%% %, %4 d % %,~C~A~~S



C.1O IBM Federal Systems Group Summary

The development approach used to build the FDRS system consisted of the following steps: ' -'

" Identification

" Conceptualization , '

" Formalization

" Implementation

" Testing

The above steps were repeated to provide more depth of knowledge with eah prototype. )ocu-
mentation which was produced included a detailed description of the knowledge, design and code
documentation. Informal design reviews and code inspections were held. l

No requirements analysis was performed. Instead, the problem was initially bound by a general
statement of wanting to prove the feasability of a knowledge-based approach for this problem. The ,

second prototype was analyzed to determine what additional requirements would be included in IL
the final version. ., .- , -:.:

Knowledge was not acquired through a domain expert, rather the engineers studied the requirements
document for fault diagnosis and recovery. Tables were constructed for each device indicating each
possible fault, the symptoms of a failure, tests which should be performed, and recovery actions.
The knowledge was represented as production rules.

The tools used in the development process varied with each prototype. For the first prototype a ,
commercially available shell was used. The knowledge based system in the second prototype was %
developed using a small internal knowledge based system shell. This prototype interfaced with .

a Pascal simulation which was 1/3 of the code. The final prototype was JOVIAL code which ..--

was integrated into the command and control system. Each new prototype was considered a " "

separate research effort and underwent the standard research approval process. Each developer I F-,,

was responsible for certain areas of the software. This individual was the only one authorized to .... '
make updates to his assigned area. All software followed a naming convention to track the current -
versions of the system.

The FDRS system consists of a knowledge base and an interpreter. A uniform knowledge represen-
tation was used, as well as a separate, simple inference engine. In terms of size, the knowledge base
contains approximately 100 rules. The following is a list of the components and the percentage of "

the total system.

Component Percentage

Knowledge Base 20%

Inference Engine 50% ":."'.-

User interface 20%

Support Environment 10%

C-14

V.0 %~ % x%.. %

r~ 4) P P * %WP*. ~-



C.11 Inference Corporation Summary (Authorizer's Assistant)

No formal test plans were developed, instead each path of the knowledge base was tested by going
back to the original table of possible failures and testing to see if each failure path was followed
in the expected manner. Unit tests were performed on each separate rule base, and integration Nq N
testing wa3 performed on those rule bases which interacted with each other. The FDRS system .,

was tested within a simulation of the command control system.

C.11 Inference Corporation Summary (Authorizer's Assistant) a :

Inference Corporation reported on an Authorizer's Assistant system which was built for Aiieri-

can Express, Inc. The system aids human authorizers in evaluating complicated charge cases to
determine if the charge should be authorized.

The Authorizer's Assistant was developed by 8 people. The project personnel was broken down as
follows: I Manager, 4 Knowledge Engineers, 2 System Engineers, and 1 Technical Writer, all with
previous Al experience. The first prototype was developed in 15 man-months, and 72 man-months
later the fielded system was completed. 10

In terms of demonstrating the feasibility of a new technology and overall user satisfaction, the .

system is considered a success. Productivity gains are in the process of being measured. Inference "

noted additional criteria for this system as the direct savings due to fraud loss reduction, and the '
"

less tangible improvement in customer relations which are promoted by the systems explanation -
facility.

The following are the steps utilized in Inference's development approach.

" Knowledge Acquisition

" Design %

" Implementation

" Knowledge Engineering/implementation
P.'= •s*. d

" System Interfaces .

" Validation & Development Tools

" Commercial Systems Coding

* Expertise Validation & Refinement '.

" Acceptance - ..

The Knowledge Acquisition and Design steps were performed iteratively to produce a prototype : %'Q'_

(Implementation). With the prototype complete, the steps of Knowledge Engineering, Implementation, %

Systemims Interfaces, and Validation and l)evelopment Tools were performed and produced a corln- 1P %10

plete systin. Fron the complete system the steps of (omimercial Systeiis (Codiiig and iElpert isv

Valih tln au14 hiltehviient were performed. When these steps were compleh, e. the project was read. %
for the linal step of Acceptance. Throughout this process, there were discussionls and re% iews with , ,"'

C-15

S" " -' *- "A % . w S ' * %w% .,..

A .'* 'e.% .



p -g%7r -- 
-J -

' r

C.11 Inference Corporation Summary (Authorizer's Assistant) %

the customer. Documentation that resulted included: a Design Document, Project Organization

Charts, Schedules, Users Manual, and a Manager's Manual.

The requirements analysis phase performed was focused on the activity of knowledge engineering.
.'_ *.*'

Users were included as experts and a Design Document was produced. The process was bounded 0

by continuous discussions and reviews with the customer.

The method used to acquire knowledge for the Authorizer's Assistant was a follows:

1. Watch authorizers work

2. Team review of cases off line with experts

3. On going process of Knowledge Base refinement

4. Review of code by experts

5. Review of system's behavior of real cases off line with experts

6. Doing the job and learning first hand

The knowledge acquired was represented using production rules. The system's knowledge base has
expanded and the decision not to include additional knowledge was a managerial one determined
by the constraints of the contract. Six experts were used, and they were chosen by the customer's
internal review process which is based on service, productivity and accuracy of work. One expert :
was used predominately more, who settled inconsistencies and discrepancies.

Inference's ART development tool was used, along with Symbolics Common LISP. Users were
involved throughout the development process. The prototype was a subset of the final system, it
was not and never intended to be "throw away code". Design changes did occur over the course
of development, but the fundamental design did not change. Approval for the changes was via the

project manager and interaction with the customer, when needed. The system is connected to a '
IBM transaction system. This proved to be a very time consuming process. There was no formal
software configuration management on the project.

The Authorizer's Assistant has a separate inference engine, a uniform knowledge representation,
language processor, incremental compiler as an interpreter, a communications handler, and a sym- -

bolic scheduler. The knowledge base consists of 800 rules. The following is the division among the

,- types of code: "

* Knowledge Base 20%

. ART Inference Engine 40% S

9 User Interface 12%

. Fnvironment 28% .5..=',

No formnal test procedures were developed. Code was written to partially automate the review
process such that sets of test cases could be run in batch mode. Users were involved extensively

C-16 . Jm

% -- - - i SJ'S
,~% .%~\4'A 5~%\%~'~ ~•. . - ., -, -, .-,. .,-' .4" ," " " v, ... _... t " . N," ,.. "-" ,



.% % %

.. - '"

0

C.12 Inference Corporation Surmmary (Medical Charge Evaluation Control) .

in the testing process. The expert system results were compared with the experts conclusions and - -
found to be correct 97% of the time. Testing was done at the system level only. The system is not

self modifying.

System performance was very important. Performance was measured along three axes: CPU,
swapping and garbage. The code was "instrumented" to find out where CPU was being used and

modifications were then made to various parts of the system. Inference feels that the performance .v

improvements were made too late in the development process, it would have been easier and faster
to have made design decisions all along that would have contributed to a high performance system. %

User suggestions were made, and negotiation was used to determine if they would be implemented.

The following is a list of Inference's lessons learned from this project. % .

1. More design should be done up front.

2. Performance monitoring should be done throughout the development process. P% .J., P

3. More test beds should have been developed for simulating various parts of the ciistoer's ;.-.*,

systems to avoid the dependency on last minute testing.

4. Application of more "classic" software engineering techniques. %-%

5. Use of management tools for actively tracking the project: (i.e. Gantt and pert charts and .:

automated schedulers). -

C.12 Inference Corporation Summary (Medical Charge Evalu-
ation Control) , " ".

Inference Corporation reported on a Medical Charge Evaluation and Control (Medchec) system

which evaluates medical claims and prioritizes them with regard to possible mischarging. Inference r

has had extensive experience building Knowledge Based systems; prior to developing this system .-

thev had built somewhere in the vicinity of 10 - 20 systems. Medchec is being developed under '"-

' nract i, by : enginivers, (1uc with )rcvioiul AI experience. The first prototype was built in 6
t111111~ lth ' ""

In termsa of overall iuser satisfaction the Medchec system is so far considered a success. Inference feels Y
this to be the most important criteria for success. As far as productivity gains and demonstration %

of a new technology the system is also considered successful. Inference noted that another (riteria -

against which to measure success was the degree to which the developed approach can be easily

extrapolated to other applications. -

The following are the steps and products used in Inference's iterative development approach.

C-i17

-** . .lV % *%.%i % % %.:f%



C.12 Inference Corporation Sumary (Medical Charge Evaluation Control).k

Steps Products -b

Identification Proposal

Conceptualization Rule set description

Formalization l)atai structures

Inplementation (ode/prototype ,...

Testing Trest case panel results

It is important to note that these steps were not performed once in a sequtenttial nanner. lRatler,
all steps except identification could be entered from the previous and/or succeeding steps. Re-
views were held at approximately I month intervals. These reviews included high level overviews,
demonstrations, reports produced from the expert system, and PERT charts of current progress.

A requirements analysis phase was performed in which the users, who were also the experts, par- a
ticipated. The experts were interviewed and asked how they would audit hundreds of claims if they
had the time. This system does not mimic any current operations but instead performs a depth of %
analysis never done before. The users/experts completely defined the requirements of the system.

Knowledge was acquired from 3 experts during group discussions in which very little conflict arose.
The knowledge was grouped as follows. 0 :

1. experience of past mischarging

2. expectations of mischarging patterns

3. suggrstions by knowledge engineer

The information was documented in the form of taxonomy and English-like "rules". The knowledge
was represented in frames and rules. The frames were used to index demons which computed
patterns of repetition of a service and costs of a service. The frames were also used to linearize and r.P

combine the various assertions of interesting patterns for reporting purposes. The rules were used
to detect each pattern of mischarging, one main rule per pattern. The knowledge base expanded
as "recommended by the experts".

Development tools used were Inference's Automated Reasoning Tool (ART) and LISP on a Sym- O.bolics 3675. Rapid prototyping was also employed. The philosophy on the Medchec project was to'.2

build prototypes as a subset or framework of the completed system. From the start it was designed
to be extensible and expandable both in performance and capability of supporting all types of

' knowledge and inferencing or reasoning techniques. The prototypes were not throw away systems.
Many low level design changes occured with no approval necessary to implement changes. Also,

'" there was no formal software configuration management on the project.

The Mekluec system has a separate inference engine, a uniform knowledge representation of [acts '
and rules, a communication handler, and a justifier which was used to flush obsoleted facts. The
system size is small and uses forward and backward chaining reasoning. The initial knowledge base
consists of 50 rules. The communication handler consists of 3000 to 4000 lines of LISP to handle

C-18

% 4,



C.13 Lockheed Aircraft Service Company Suzmmary (Expert Software Pricer) 5" '-

data parsing from the claims database on a S-mini computer. Also included in the system is about .,"

140 schemata for loss types and diagnoses. The following is the division among the types of code.
-b

" Knowledge base 30%

" Inference Engine 10% - enhancement of ART features

" User interface 20%

" Support environment 40%

No formal development plans were developed to test the system. The experts review the reports
generated by the system to assess accuracy. The Medchec system incorporates feedback from '.

auditors on confirmed mischarging to alter its ratings.

C.13 Lockheed Aircraft Service Company Summary (Expert %
Software Pricer) ' _

Lockheed Aircraft Service Company (LAS) reported on an Expert Software Pricer (ESP) system
for software costing. Included in the ESP system is a knowledge based Expert Sizer which assists -.',f
in estimating the size of the software system being bid. Once determined, the size can be inplt

into one of ESP's pricing models. .

ESP was an internally funded project and the first Al project developed by LAS. A two person teant .IN %

developed the first prototype in 4 man-months. It took 12 man-months to complete the system.

The schedule was defined by the funding that was allocated. Where applicable, LAS Software N '

Engineering Procedures were followed. e

LAS feels that the system is successful in terms of demonstrating the feasibility of a new technology
and achieving significant productivity gains. The ESP system has demonstrated the capability of
applying AI techniques to software costing while also providing savings in software bidding tine

and effort. In terms of user satisfaction, LAS is encouraging the use of the system withinl the

Lockheed Corporation. .

The development approach used to build the ESP system consisted of the following stages:

" Identification %

" Conceptiialization ' "

" Formalization

• h11plenmentation " -"

" Integration "- ;.'

• Ie11ollstrate/' st..81,

V~ %

Ala C-19 '

: • : % : % ~.,..,-A. ,,.,- .. ,, .-...-... ,'"
A-,-. S"..

"
, .. .,, '.,'.. ,,, .],¢ ~ . ,_, , .: .,-, -,. .. ,, -,.,-,-.,.-, ..- ,."- " ,..i[

S' "--* a. " " """ - '- i- --' 
'

" . ",. "1 .,"1, ,. A % . \ %% A q, % " ' * . -. - .", "•



C.13 Lockheed Aircraft Service Comjpany Suminary (Expert Soft ware Pricer)%

About 2 internal reviews per month were held during the developlWnt jproce.. 'lihtw review.,

involved status reporting and demonstrations. A requirements analysis phase ws performed which

yielded a Software Requirements Specification document. '

Knowledge was acquired from examining source code and documentation from completed software %
systems. The functions of the systems and their associated sizes were then documented. Knowledge

acquisition is considered to be an ongoing process. The knowledge acquired was represented as

frames with incomplete knowledge denoted by flagged dummy information.

The ESP system was developed using the Lockheed Expert System (LES) shell. LES includes a

backward chaining, goal driven inference engine. The user interface included in LES was enhanced 
to make it more user friendly and accomnmdate the highly intcractive nature (if the ;xperL. Sizer.

In an attempt to limit the solution space, each type of software system to be sized (i.e. avionics
systems) is represented as a separate knowledge base. Rapid prototyping was performed very early
in the design conceptualization phase. Users helped identify bugs and made recommendations for Q -

improvement during the development process.

ESP is under configuration management using the VAX/VMS CMS system. A Software Change
Request must be approved before any change can be made. Once the change is completed, a 0
Software Change Description must be generated before the change is incorporated.

The LES shell provided the following elements:

9 Language Processor K
*.JIistifier'' """

* Interpreter

• Scheduler .

* Consistency Enforcer

" Communications Handler

The knowledge base consists of 77 rules with 700 lines of factual knowledge. The user interface and
support environment written for ESP consists of 1200 lines of Pascal code. %

There were no formal test procedures used to validate the ESP system. Systems with known size
and costs were used as test cases. If the ESP estimates were within +/- 80% of the actuals, then
the system results were considered acceptable.%

1 IIoWlf'(t'( acqu1iisitoti has lbeen a difficult and time-consuming task. It is felt that a tool to allow
iisers to iuupul. their .4ite specific iizing data is needed both to alleviate the system developers from
the knowledge acquisition task and to allow users to more easily customize the knowledge base.
LAS plans t~o build such a tool this year.

C-20

% % %
.- '; ./ o

%%~~' %I $~

I(.,wh'r, arq isi, in ha hen adiffcul an tim -co sumng tsk t i fel th t atoolt~oallw '.'.-_. *'
Asr oiptterstseii iigdt snee oht leit h ytmdvlpr rm..) ..



C.14 Lockheed Aircraft Service Company Summary (Frequency Hopper Signal Identifier) "

C.14 Lockheed Aircraft Service Company Summary (Frequency J'A
Hopper Signal Identifier)

Lockheed Aircraft Service Company (LAS) reported oti a Frequency I lopper Signal Identiiher sy -

tem which detects and characterizes frequency hopped signals. The Al component aids in signal
identification. This was an internally funded project and the second AI project developed by LAS.

One person, with prior Al experience, developed the first prototype in 9 months.

The system is considered a success in terms of demonstrating feasibility of a new technology. As %
far as significant productivity gains, the system has been successful for some but not all possible
signals/signal environments.

A requirements analysis phase was performed which yielded a technical proposal and report de- Or
scribing the theory and implementation in detail. User involvement in this process was considered
very beneficial.

Knowledge was acquired through a literature review and interviews with experts. The experts
provided a small amount of very useful information. The knowledge acquisition is considered to -
be an ongoing activity. The knowledge acquired was represented in a temporal framework witl

confidence levels attached to most inferences.

The system was developed in Common LISP on a micro Vax. Iterative cycles of design and imple- ".
mentation were employed. The magnitude of changes was large with no prior approval necessary. %,.

Rapid prototyping was used to test feasibility of implementation and to identify shortcomings in
design. The iterative cycle consisted of the following steps:

" Implementation "'"-

" Refine prototype

" Test to determine shortcomings

" Upgrade and expand prototype

The prototype was never frozen. User participation greatly influenced the development process.

The architecture of the system consists of a uniform knowledge representation and a simple inference

e1nghi('. 'l'lyst em 4-11.nai1n. hc following conp)Ients:

* It.owledge base

* .1iitasiler

S(S* Scheduiler t . "

e (Consiste(ncy enforcer .' %
,. +,

'lhe size of the components listed below is in terms of the number of LISP finctions: a'

0

* Knowledge base - 50 %

C-21

• P . + . -• . -* = • . % . - - • • , +* . -- . - . a . - % . . . r . . -

S%. r. le W.

A.~~ % 'a ' a . 'a . a 'a .a 'a. .



a -- a.w r.T " r"-- .g *a. . . . . . % %',aPk. h

.O p

C.15 Lockheed- Georgia commy Suniiijary

* ..:.,:,...
* Inference engine - 6c

" I'ser interface - 20

" Support environment - 40 %

No formal test procedures were developed. The testing strategies consisted of simulated real tie

response; i.e. how fast could a hopper signal be detected and characterized, also, how (o a wide
variety of noisy signal environments effect performance. The criteria for system tests was that of

consistency and improved performance rather than pass/fail.

The svsteni developer feels that taking the time to try to oltaiui a geit-ral kniowledge of the ttgl-
plication, and how conventional methods approach the problems can be cotiterprodnctive sintce it.

tends to channel thinking along conventional lines. This was also true to some extent in reviewing I

Al approaches.

C.15 Lockheed-Georgia Company Summary

The Lockheed-Georgia Company (LGC), under a research and development contract from the U.S.
Air Force, is developing a Pilot's Associate system. The objective of the system is to provide %
pilots of single seat fighter aircraft a near real time on board support system. The system's jobs
include monitoring the mission environment, evaluating each situation, and providing intelligence .
to the pilot on the current capabilities of his aircraft and the tactics deemed usable in a specific . ..

situation. The information provided to the pilot is analyzed against the mission or alternate mission
objectives. '

The project team consists of over 40 engineers. 65% of the team has had some previous experience in / ,
AI and/or Expert Systems. All of the engineers on the project have had prior experience developing
software for the Department of Defense. %
The ilot's Associate is currently in the analysis stage. It is expected to take over 240 man-months % %

to conduct, the analysis, develop a simulation package, conduct two demonstrations, and deliver
documentation to the customer under Phase I. Significant productivity gains are scheduled for , V .• ~~~~..-,.Q.:
Phase I, since knowledge base designs will have been established. Phase II completion is scheduled %
for February, 1989 and aims at developing real time processing of cooperative Expert Systems. The
success of this project will be measured by two demonstrations of a portion of the overall task.

System development of the Pilot's Associate is based on the rapid prototyping of elements within
the system components and integration builds around the mission manager executive which is a
central system blackboard. Informal reviews are held prior to each integration build. In addition,
formal design reviews are scheduled during the three year project. p S

The requirements analysis phase was completed thirteen months after the start of the contract. , .
This phase iichided rapid prototyping to define requirements for each system component. System
SpecificatiMn and Subsystem Description documents were produced for each component of the
systemi

]'he knowledge acquisition in this project is accomplished via documented interviews with Air Force 5
fightrer pilots. These interviews are reviewed by a technical review board consisting of Lockheed,

%**

C-22 -

. .. ,., .. ,.... . ,..,..a... . . %.,> . %;., .%,, V,. ,.-.a ..% ... :a.-:..,-..%.<- ...... . ., ... a). ->:

.%. % _ , - - . - . ,.% %-
%~a % ~*



- _ - - ---

%

C.16 MITRE/Bedford Summary \p!.

,%.= %.

Air Force, and contracted experts. Knowledge is also acquired from the following sotirccs (lighl -

engineers, A/C design specialists, manuals and Air Force studies. All facts shared between the

developers are posted on an electronic bulletin board for review by other experts. All docuinen-
tation is approved prior to incorporation into the technical database of the contract. Approval is
required prior to each knowledge base change and is granted at the project management level. Users W.

are included in the following aspects of the development process: reviews, knowledge acquisition, -
demonstrations of the prototype systems, and quarterly scheduling.

The development tools employed on the Pilot's Associate project are: ART, LES, and OPS5. All
subsystem developers have a major commercial tool or a mature internally developed tool. An *
audit trail is being used to track design decisions/design rational. The design changes are approved

by program management. The prototype releases are under contractor configuration control and -
are subject to control review prior to release for integration. Baselines are being used to "freeze
in time" portions of the system. These baselines are under contractor control. The configuration

',6'. 'audit trail is maintained by using a Code Management System on a DEC VAX System.

The Pilot's Associate project has several expert systems integrated into the product. The system ",
architecture is characterized by the following items: "

" Knowledge bases and inference engines are primarily separate

" Several knowledge bases must be "translated" to be understood by one another %

" Most inference engines are simple

• Overlapping knowledge.

All subsystems contain a knowledge base, scheduler, and communications handler. A language
processor and justifier are also components of the system. The mission manager handles consistency
enforcement.

For system evaluation/validation the " ilot's Associate has developed and documented test plans.
A Test Directorate, made up of experts and software engineers, develops test cases for formal
review. The tests are conducted step by step and witnessed by personnel independent of the
design personnel. A docimented record is maintained for each test. Testing is rated as passed
if the sv .t,'VI re'jiiir,-i'int. are satisfied. Ilxperts will evaluate system performance against the
s4 cilied perl'ormance of Abjectives and selcted test cases. Currently no tools are being used in the
testing pilse. Quarterly deionstrations and reviews are conducted by management and customer
Ipers'i' l" "" -"

C.16 MITRE/Bedford Summary

MITRE reported on the Liquid Oxygen Expert System which was built for NASA Kennedy Space

Center. The purpose of the system is fault, detection and diagnosis of bad sensors and components
in the liquid oxygen loading component of the Launch Processing System.

C-23

i'' ''.:'.: '.:._.-.;.:',_d. ,%-"-%.. % . . . . . .'-"-. --" ., "" ' . ."- -. . " ".' -- -- - .' "
L'ai m's". -,' -- .M '-- , d a % .% . o% % * % "* " * % °~ ' " " ''"% * * *%'.* %" '

,¢ f., % --. ,-, - , ,.. .., .. ... ., .... .--. - ., ., , .... ...... .. . ,.. . .. ,.



OD-MI94 104 ARTIFICIAL INTELLIGENCE SOFTWARE ACQUISITION PROGRAM 3/3
VOLUNE l(U) SANDERS ASSOCIATES INC NASHUA NH
C ARDAWIL ET AL. DEC 87 RADC-TR-87-249-YOL-1

UNCLASSIFIED F3S82-5-C-0254 F/O 12/5 MLIilllllllllil



L36

-I-

IIIII,__.,11112 1. U -1111. 11-21!III' IIIII 1----. 6

MICROCOPY RESOLUTION TEST CHART
JRf AL, ANARD Ig a A

A.

% z

'I. . -VI I



C.17 MITRE/McLean SummnaryN

The project development team consisted of 2 people: one MITRE engineer with 6 years experience
in building Al systems and one NASA engineer with no Al experience but considered the domain ?,-

expert. Neither had experience with military software standards.

The Liquid Oxygen Expert System project was funded on a yearly basis and there was no prede-
fined schedule. However, the first prototype was completed in 6 months and, after 2 years, the
final prototype is being used in background mode. The system is considered a success in that it
demonstrated the feasibility of a new technology and achieved overall user satisfaction.

The first 3 months of the project focused on the problem definition in which the users were in-
dispensible equal partners. Requirements were never frozen, but rather evolved as did the team's
understanding of the problem.

The knowledge acquisition process, which is never considered complete, involved informal discus-
sions with NASA personnel, review of existing software and documentation that described the
existing software. The knowledge representation method used was frame based since it best re-
flected the structure of the domain. Throughout the development of the system, the knowledge
base did expand with the approval of the domain expert. Programming tools used were Symbolic's
ZET1ALISP and FRL from MITRE and MIT.

l)uring the development process of the final prototype, several "sub-prototypes" were built. Better
ideas spurred major design changes which were then implemented as the basis of a new prototype.
Neither designs nor prototypes were ever frozen; changes were made upon consensus of the domain
expert. Because the domain expert is a user of the system, there was considerable user input
throughout the development period.

The principal components of Liquid Oxygen Expert System are the knowledge base, a consistency
checker, a fault location algorithm and an interface to the user or outside sensors. The components
were chosen for appropriateness and decided by team consent. In terms of conventional software, . ".'
the system interfaced to Modcomp minicomputers over a communications link for sensor data
transmission.

The system was tested as it was developed, against test cases and live sensor data - its performance
is judged by whether or not the users agree with its conclusions.,%

Overall, close user/domain expert/developer interaction had a strong and beneficial effect on sys- r%

tern development. The absence of a formal development procedure was an extremely positive 0
environmental factor, leading to a strong problem solving environment and high morale.

C.17 MITRE/McLean Summary

MITRE/McLean reported on the ANALYST system which was deployed to the 9th Infantry Di-
vision in Ft. Lewis, Washington. Further plans call for using the system as a test bed at both
Ft. Sill and Ft. Leavenworth for DARPA projects through fiscal year 1988. ANALYST grew out

of sponsored research to analyze and apply production system techniques to military applications.
The effort evolved into a contract to develop a general knowledge-based aid for intelligence use. A

The system processes sensor returns from different intelligence sources and displays a transient
situation of enemy combat units in real-time.

C-24 ,NAA



C.18 Northrop/Aircraft Division Sumnmary

The project development team consisted of five people, including one domain expert, and one
managing Al scientist. The estimated development time for the first prototylm, which did -ot
emphasize performance was six to eight months. The following year and a half was devoted to

enhancing system performance capability and building a knowledge base to facilitate the user
modifications.

About eighteen months were spent doing requirements analysis. During this time, an A minus
specification for ANALYST was produced. Requirements Analysis paralleled rapid prototyping
and thus influenced the choice of Al technology and tools.

ANALYST was developed using in-house and LISP tools. The only tool purchased was a micro- *.

compiler for the LISP machine. There were procedural differences between the development of
ANALYST as an internal project and development for the field prototype. There were a number of
observations made during development. It was recognized that the lack of standards was compen-
sated for by the use of Al and LISP machines. Configuration control become more defined when
the project started focusing on a delivery date. Control extended to files within a delivery build.
Changes in code were documented with comments and verified by the programmer who made the
modification. During development, the system was also used as a test bed for spatial and temporal
techniques as well as evidential reasoning.

During the testing phase, a test of the inference engine and access to the knowledge and data bases
was performed. A critical issue with the ANALYST system was the ability to interrupt during a test

for a what-if question in order to explore the consequences of a particular path. The method tested
for absences of firm requirements and complete specifications. Since several experts with different
opinions were available, testing become even more difficult. However, the user community was
conservative in their changes and considered the effects on the inference engine before suggesting a

change. Regression tests were also performed to ensure that previous prototype capabilities were
maintained intact.

Overall, the need for a prototype with user involvement in the demonstration or test phase was
considered important. Once mature, it was stated that the prototype should be released for some
limited operational testing after a much shortened in-plant acceptance test. Hardware should be
subjected to the standard testing cycle. The need for a specification requirement for an explana-

tion of the system's capability was recognized. The concept of training a domain expert about
knowledge engineering was favored over teaching the knowledge engineer about the domain since
the hitter is a thm,-consining factor. IHowever, the knowledge engineer was considered to be the S
t1:ai4 inhplent.ntr and director. in addition, the need for software discipline and standards was
ciiilhitsized particularly with respetct to the need for a specilications docimient as well as design ,'.
lind control iprincile.. %

, ,%

S. IV 1 7

C.18 Northrop/Aircraft Division Summary

Northrop/Aircraft Division reported on the Expert System for Target Attack Sequencing (ESTAS). %"'Z,-

ESTAS, an internally funded system, is a real-time system that irovides decision aids for pilots ,

under stressful and high-workload missions segment, i.e., the combat phase. Some of the decision

aids are navigation verification, target prioritization, target selection, weapon allocation to targets,

C-25

.111R II ?-,
,, ', ,, 9 * .q , -



C.18 Northrop/Aircraft Division Summary

and weapon readiness preparation. The system is expected to provide responses under all conditions

including unpredictable ones.

ESTAS is designed to be one component of a highly integrated, flight simulation system. Its re-
sponse is very dependent on the action/behavior of other components. At this time, however,

schedule and funding constraints precluded the integration of ESTAS with the overall flight simu-

lation system.

The ESTAS software development team consisted of four engineers, two with previous Al experi-

ence. In addition, two of the four engineers were experienced ill conuvcn1tiou1tl o~fLw4Lre developtlessi.

for DOD. The development of the system from problem definition to first proltotype Look six montLh m. ,
or two man-years. Management predefined the schedule, and nuo follow-on efort to fild the symtettl
followed.

ESTAS was developed within the framework of the traditional software development cycle with
the exception that iteration amongst phases was acceptable. The specific model used to develop
ESTAS consisted of the following phases:

" analysis- document the operational environment which included mission profiles and timelines;

" definition - document the system functional requirements and applicable areas for AI software
development;

" identification - document specific input and output criterion, and general description of the
application requirements based on problem characteristics;

* conceptualization - report on AI concepts and techniques that satisfy application requirements; %. %

%

" knowledge acquisition - document rules and facts;
* formalization - expert system shell code and related documents;

" implementation - updated document of rules and facts as well as code the knowledge base;

and

" testing - test result reports.

Iterations through formalization and testing were an inherent aspect of the software development

effort. Requirements were frozen at the end of the analysis phase to avoid modification problems. "

Prototyping began after the conceptualization phase. Documentation was enforced but not based
on the MIL-STD documentation practices. The documentation included software requirements, %

top-level design and detailed design. Technical reviews to assess system progress, as well as analyze
and solve problems were held periodically. Progress reports were given to the developers. System
demonstrations at the end of formalization, implementation and testing were also provided.

Knowledge acquui.ition consisted of domain research by the knowledge engineer and interrogations
of the expert which included questionnaires, round-table discussions/interviews, and acting out %
of hypothetical situations. Laboratory simulators were used to illustrate the experts views and
comments. The means used to gather the expert information involved note taking and tapes.
Then, both were transformed into prose and eventually pseudo-code which underwent a formal

C-26

..



C.19 PAR Government Systems Corporation Summary

approval process. Knowledge acquisition was considered complete when the expert approved the
knowledge bas for the specific case. At this time, the knowledge base consists of 171 rules. The'l'
inference mechanism used is based on both forward and backward chaining.

The rule-based knowledge representation method was selected because of tile need for real-tilie
system responses. At this time there are no means for accomodating ill-defined 'or incomplete
knowledge. The chosen representation was reviewed during a design walkthrough. The knowledge
base continued to expand through informal reviews and a formal approval process until the first
prototype release. The only tool used, the LISP workstation, incorporated required tools such as
a language (Common Lisp), a graphics implementation and a developer interface.

The major components of the system are a knowledge base, a separate inference engine and a user
interface. Cost and schedule constraints precluded the implementation of a language processor, a
justifier and a consistency enforcer. The architecture underwent a formal review and approval by
technical associates and the project engineer.

Performance of ESTAS was primarily based on user satisfaction and the expert's evaluation follow-
ing incremental additions to the knowledge base or inference engine. Discrete components were not
tested separately. Other than tracing facilities built into the system, tools were not used for testing.
Because ESTAS was not integrated into the overall system, rigorous testing was not possible nor
desirable.

Several observations were made throughout the development of ESTAS. First, system decoinposi-
tion was believed critical to the successful integration of an Al system to a larger system. Second, it
is believed that Al developments must go through the traditional system development cycle ( iter-
ations acceptable) involving the required engineering disciplines. The implication is that engineers
across the various disciplines must be knowledgeable in Al. Third, the expert must be assigned ,
and committed to the project. Expert participation on an "as available" basis hindered progress
on ESTAS. "1'

C.19 PAR Government Systems Corporation Summary

PAR Government Systems Corporation (PGSC) reported on three systems: Duplex Army Ra- 0
dio/Radar Targeting Decision Aid (DART), Cost Benefit of Tactical Air Operations (CBTAO), and
See and Project Enemy Activity (SPEA). They are all decision aids for the Tactical Air Control %
Center, developed to the point of a working prototype. None of the systems have been deployed.

The DART Aid is designed to assist the Command, Control, and Communications Countermeasures
(C1CM) Analyst in the identification/classification of the following targets:

" IUnidentilied (C'oinitnld 'ost (UICI') i%.

* Air Defense Iegimental Headquarters

" SA-8 Iattery

" SA-6 Battery

C-27

l, V V.
" " • ** **• * %IN| IN , I

O%



C.19 PAR Government Systems Corporation Summary

" SA-4 Battery/Battalion/Brigade

" Division Main Headquarters

" Division Forward Command Post

i Division Alternate Headquarters

" Radio Relay Stations

" ZSU 23-4 4.

" EW Radars

The CBTAO decision aid allocates tactical air resources into mission packages, based on the highest
probability of success. The system also provides the planners with estimates and explanations of
the cost and benefit of such tactical mission packages. The planners using the system can accept
or modify the recommended force packages based on his judgements.

The SPEA decision aid assists the tactical air resources allocation and employment process by
providing planners with the ability to systematically project the dispositions of enemy forces up
to 72 hours in advance. The force projections may be adjusted as necessary to compensate for %

perceived differences between the SPEA projections and the real world. The end product is a
"planning picture" to be used by Combat Plans in interpreting the situation for the next day's Air
Tactical Operations (ATO).

All three decision aids were contractually funded. DART was developed under the Decision Aids
for 'arget Aggregation (DATA) RADC contract. Both (BTAO and SPEA were developed under
the Integrated Tactical Air Control Center (ITACC) RAI)C contract. ,d.

At PGSC, one Al schooled engineer is tasked to work on a given decision aid. The Al engineer is
team leader where a team can be composed of 3 to 5 computer scientists and one or more in-house ,,

domain experts. Essentially all the engineers have prior experience in developing software for the .1 -
government.

The development process used to build the decision aids consisted of the following phases:

" Task I - Analysis and Design : preparation of Problem Definition Statement (PDS) and a

high level design structure of the system. Includes requirements analysis wherein the domain Sid
experts define the problem;

" Task II - Development and Documentation : building a prototype or vertical slice of the
system, and preparing technical, test and user documentation; S

" Task Ill - Test and Evaluation : system evaluation, from a technical and operational stand-

point.

rhe knowledge acquisition process was accomplished via sessions with knowledge engineers and
government supplied experts. Knowledge gained was recorded either by tape or by hand. In-house
experts or consultants were then used to verify the accuracy of the information provided. In cases

C-28

.. ' " "~," ".J" " " ~W W . _6. -



C.20 Sanders Associates, Inc. Suimnary

of questionable knowledge, a consensus approach was used. At PGSC, the preference is to train an
in-house domain expert to be a knowledge engineer to work with the government experts rather
than use a knowledge engineer with little or no domain experience. For the three decision aids, the
knowledge was implemented in the form of production rules with confidence factors.

PGSC has internally developed several expert system shells that use a rule based, probabilistic
inferencing mechanism. Each decision aid was developed using one of the in-house shells.

For each system, PGSC built a working prototype which, when coupled with the PDS, defined
the final product and provided a proof in principle for the finished system. Users and experts .
were introduced to the system at the prototype stage, approximately 8 to 12 months into system : , o
development.

Both DART and CBTAO contain a knowledge base (facts/rules), justifier, rule compiler, inference
engine, and scheduler. In the DART system the knowledge base contains 222 rules and 20,709 total
lines of code. The DART system was developed using an in-house shell written in Pascal. The
graphics and data base interfaces were written in C.

In the CBTAO system the knowledge base contains 50 rules and 12,886 total lines of code. The
CBTAO aid was developed on the Symbolics 3600 and a Tektronix 4125 was used for color graphics . 0

display. A GKS package was developed to provide an interface to the Tektronix.

The SPEA system was built with object oriented programming using the Flavors package on the -
Symbolics 3600. The SPEA system is 6,000 total lines of code and contains 115 Flavors Definitions.

Formal Test/Evaluation Plans were developed for all three decision aids. The systems were tested 0
as entities both technically and operationally. Technical evaluation was performed by a group of ex-
perts and nonexperts with computer science/ engineering backgrounds. Operational evaluation was %
performed by potential users who responded to questionnaires. The questionnaires were designed
to extract the users' perception of the systems in terms of strengths, weaknesses and suggested ,.

improvements.

C.20 Sanders Associates, Inc. Summary

Sanders Associates Inc. reported on an internally funded effort to build an intelligent assistant ,

for the task of reprogramming automatic test equipment. The purpose of TESS, the test assistant ?-,_'
program, was to develop a technology base and capture some specific knowledge about testing of
ECM systems.,,'% Ve

There were three participants from the Al side of the house; experience was minimal, although two
had successfully pursued academic studies in Al. The domain expert was from the user community.
Substantially less than half time was available from the domain expert/user representative.

TESS personnel agreed with the steps outlined in the proposed development cycle. They stressed - ' y..
the iterative nature of the identification-conceptualization-formalization-implementation suhcycle. ,

This was driven predominantly by the need to generalize specific cases after enough problem un- 0
derstanding was achieved.

C-29 ,

p. **4,I..* ;.. %
? , p. - 0 - II. . 00



C.21 SA&E Sununary (Decision Support System)

Products of the various stages included an IRAD plan in the identification phase, constraint defla-
tions and user interfaces in the formalization phase, and knowledge, data layout laiguage and"-
attached primitives in the implementation phase.

Knowledge reorganization occurred within the FRL (Frame Representation Language) to accomo-
date generalization; sometimes this reorganization would require some functional extension in the i

FRL. The changes came from increased understanding of required functionality. The only controls
on changes were the need for team agreement. The largest changes were in the area of the user
interface and the knowledge base restructuring. It was felt that these areas represented something
like exploratory programming.

Reviews were informal day long working sessions with Al project personnel, and a consultant. The
main emphasis was on direction of future efforts with little time spent on reviewing past work.

The requirements analysis phase was used to set goals and directions. Many details of the require-
ments were deferred until prototyping was finished. No documentation was produced explicitly
from the requirements analysis phase. There were IRAD plans, notes from review meetings, and
the immediate code generation (i.e. documentation of system as built/executable). Requirements
were not frozen but were left in abeyance. Users were included in the requirements analysis to the
extent their project loading could spare them.

Testing was informal and done on small chunks of code. There was some reliance on repetitive
execution to provide confidence in the reliability of the modules.

Tool usage was centered around the development system afforded by the Symbolics 3600 system.
Some additional tools that came out of the TESS experience were FRL, the Data Layout Language -.. 0
(DLL), and the constraint propagation language (CPL).

Frames were selected as the basis of knowledge representation based on a consultants review of the C-N'
project and its features. There was some support for incomplete or uncertain knowledge including %
decision postponement.

The TESS developers were not able to judge the completeness of the experts knowledge. They felt
that there was not enough involvement by the expert. Several items that they would look for in A
an expert are: availability, commitment, interest, recent and on-going practice, competence, corn-
munication skills. Areas of interface and control with the expert were characterized by needing to
establish a tasking or contractural relationship; periodic performance reviews, and shared physical
accomodations.

C.21 SA&E Summary (Decision Support System)

SA&E reported on a decision support system which is a classified project. The prototype was
completed within the first year. Subsequent releases are produced every three months. The system's W... W#
developlni'it time has been reduced because of a tool built, under the same contract, the Decision , .
Sipp,,orl. I)evelopinte, System (l)SI)S), which aids in the creation of run time systems.

'The, SA&E software development teams consist of two engineers to develop the decision support
systemi and fifteen engineers assigned to DSDS. One of the engineers had extensive Al experience. %

C-30

S.
~" -*m/ 'm.~% .S % - - ~.,-% N*- %.



C.22 SA&E Summary (Sensitive Financial Analysis System)

Also, one engineer had minimal experience with the Department of Defense software development
process.

The general process followed in the development of the decision support system consisted of the
following phases: requirements definition, specification, validation, generation, and verification.
The requirements analysis performed involved a definition of goals, the impact of design options on
schedule and the system architecture and an iterative redefinition of requirements for each incre-
mental system release. Documentation consisted of a requirements specification that the customer
and development manager reviewed and signed off for each increment, a design document for each
iteration, and informal knowledge acquisition memos distributed to customers and the design team.

Knowledge acquisition involves regular interviews with the experts/users and additional research
on decision support. Apparently, the incremental approach to software development helps. Experts " -
are given a number of opportunities to supply knowledge information and to define the rules which
govern the decision support system.

The knowledge representation method is rule-based. The DSDS environmental development tool
used by the decision support system, makes use of Knowledge Engineering System (KES), Unify,
LISP procedures and GE Scan.

The major components of the system are a knowledge base, a justifier, an inference engine, a
language processor (LISP), a scheduler, an interpreter, and a communications handler (TCl'/IP1).

Alpha and beta tests are performed on the SA&E system. Alpha tests ensure that the integrated
system works. It is then given to the application engineers for rigorous testing. Beta test involves
a user demonstration of the system for evaluation and comments. Assessment of user satisfac- -,
tion is accomplished via video records of customer reactions to the product. Acceptable systemri
performance is determined by the experts. o-

Overall, the development and availability of DSDS vastly improved the decision support system's #I

development time. Through the use of the DSDS environmental tool, a large production expert --

system can be more easily developed and maintained.

C.22 SA&E Summary (Sensitive Financial Analysis System)

SA& E reported on a sensitive system which was developed for an unnamed client. The system,
which was contractually funded, analyzes linancial data. The prototype was developed within three
months followed by the final product eight months later.

The SA&E software development team included two engineers, of which one had previous Al
software developmient. experience. Neither engineer had previous experience with conventional 0
.tftware development for the )epartment of )efense.

The developers found the following software development model appropriate to the Al project:. ""p

* hhutiliiation - dle.rntining problen characteristics '

* ('ategorization - categorizing the domain knowledge "r

(2 31

,,," ,S ' 4/',,''U'U,,"'



C.23 Texas Instruments Inc. Summnary

" St ructuring form the framework for the knowledge by contirlnthlg the attribute h-ierarchy 0,-

" Implementation - capture knowledge

" Testing - validate the knowledge base and system behavior

A requirements analysis was performed. The system was built incrementally. Each increment
consisted of a functional system with more capabilities. Informal reviews and approvals followed. -ef
No documentation was required by the customer. However, informal notes were distributed.

Knowledge acquisition involved the following process. First, specific statements were defined and
used as a premise for judgements the system was expected to be capable of performing. Second, 7
the data needed to produce the judgement was identified. Third, the logic required to make
the connection between data and judgements was determined. Finally, case studies, with known
outcomes were used to identifiy incomplete knowledge.

The knowledge representation method was rule-based. Tools used were the Knowledge Engineering "V e
System (K ES), which is a high-level expert system shell, a standard text editor and the KES parser.

The major components of the system are a knowledge base, a justifier, a consistency enforcer, a 'r e
communications handler and an inference engine. A selection of available software tools marketed ' ?

by SA&E determined the system's architecture.

The system was evaluated by running a series of case studies with known outcomes through the
system. Experts decided whether or not the system met the performance requirements. Both the -
systein and the individual rules were tested. %

Overall, the regular interactions between the experts and the engineers led to the success of the
system. Experts were allowed an opportunity to familiarize themselves with the system, determine
what kind of data the developing engineers needed, and to correct and expand the system. r

C.23 Texas Instruments Inc. Summary
U..~

Texas Instruments Inc. reported on the Production Scheduler Expert System which was to provide
a scheduling mechanism for textile fiber production and inventory. The system should have been
commercially funded prior to each of the following three phases: the demo system phase; the".6
prototype system phase; and the final production system phase. However, funding was removed ,.?
three months before the prototype release due to a lack of customer resources. The estimated
completion time for the final product phase was two years.

S
The Production Scheduler software development team consisted of one knowledge engineer to man-
age and implement the system and two domain experts that defined the knowledge and constraints. • ,",. . -
The knowledge engineer had a good working knowledge of Al tools and of Lisp programming
techniqueq and conventional software development, but little Al software development experience.
0ther nmanageient and engineering resources were available. Minimal reviews between the knowl-
edge engineer and the domain experts transpired. The meetings, although limited, were found %
extremely valuable.

C-32 I

V..-Is, % % %*V ". % -. " .- % % % % *%*, , . . , . "



C.23 Texas Instruments Inc. Suuiijaiy

No formal requirements analysis was performed. The requirement problems identified resulted froim
a previous attempt to resolve the problem through conventional programming techniques.

The general process used in the development of the Production Scheduer to (late consisted of tih, e VW
following phases:

* Identification - determining the feasibility of the application based on the limited scope of the
problem and the ability to gather a static collection of facts and constraints.

" Conceptualization - a frame based knowledge representation was chosen. Also, an initial

knowledge network was defined.

* Formalization - designing structures to organize knowledge.

" Implementation - gathering knowledge via the user.

The structure of the knowledge base was modified several times throughout implemneintatioii. As
previously mentioned, no prototype was released. Formal documentation was not provided at the
end of the identification, conceptualization or formalization phases.

Minimal reviews between the knowledge engineer and the domain expert were allowed. '['he lack
of direct access to the domain expert and the customer's management hindered the successful .
acquisition of knowledge. Also, incorrect assumptions were made by the knowledge engineer which

resulted in disillusioned users. When the project was terminated, knowledge acquisition was not,
complete. W.

The knowledge representation method is frame based. The entire system development met with
no formal approval process. Tools used to develop the software were LISP and a windowing forms
management tool.

The major components of the system were an interpreter, a scheduler and a user interface. In
addition, a communication handler had been planned.

A formal evaluation process, although scheduled, did not transpire since the system never reachme(.
completion. At the implementation phase, the domain expert checked the schedule test (late for
accuracy. The interface was tested separately. Then, both were tested together.

Overall, the customer's availability and committment Ps well as sflfcie.nt funds to complete tile S
p~roP-,e-t were de'lermined as necessary, bit. lacking for the I'rodutctin Scheduler project 'l'h rela- '
1.honshilh between the knowledge engineer and the domain expert, cultivat-es the user s %iew of the
,mv.4t.ei. W itlo.t. regular reviews, the ser's expectations of the s stm may not be sat islied The e.'

iblility to ac(uire kniowledge from uiser's, and the cust.onmer's nlaniagenment shold be en('oraged,

Also, acceptable syste behavior should be documented.

.'-'a-.,

C -33

a-a- a .~ --a ~0



tow-Ario -- l

MISSION

Of.

Rww Ar Deelopent ente

RADCpf-n-6 nd xecuez e~eatch devtopentteI
and eteced aqui~tio p~o,%am in uppotto

to e om e Aire Developmeonto CentertmA
RAcmmuns atind6 e~cmmad an e onatoh deuetopen,-et
manag6emen~t, acqu~maton p'oeAzm~n Auppo4.tac J,
CAnomma, Cntttien dom~~at on atin andteUZante
6~oid w4tat n A'c06cmpience4 eZs p~ovagded t an

pcommanaton,con and etc~nco antaLbtty

and coimpatibit2Lty.

% %-p

5 v - vs v~s NV N"V, V..V



II
% .%

t. C .1"%

A -,

' " ,"""'

.i ,p *' "

_. .
.

W' 

J

• ,., ,,r ,,, , ,,r ,-, , , : ' ,, ,, , ' , ,,ns " , .- r -# €.:- € -.€ .... .- ., . ... . . . , , { . .. , ., ,,-.


